Optimal control of tritrophic reaction–diffusion system with a spatiotemporal model

2022;
: pp. 647–662
https://doi.org/10.23939/mmc2022.03.647
Received: April 29, 2022
Revised: July 02, 2022
Accepted: July 05, 2022

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 647–662 (2022)

1
Analysis, Modeling and Simulation Laboratory, Hassan II University, Casablanca, Morocco
2
Analysis, Modeling and Simulation Laboratory, Hassan II University, Casablanca, Morocco
3
Analysis, Modeling and Simulation Laboratory, Hassan II University, Casablanca, Morocco

In this paper, we propose a new model of spatio-temporal dynamics concerning the tritrophic reaction-diffusion system by introducing Phytoplankton and Zooplankton.  We recall that the phytoplankton and zooplankton species are the basis of the marine food chain.  There is prey in each marine tritrophic system.  The main objective of this work is to control this species's biomass to ensure the system's sustainability.  To achieve this, we determine an optimal control that minimizes the biomass of super predators. In this paper, we study the existence and stability of the interior equilibrium point.  Then, we move to give the characterization of optimal control.

  1. Leslie P. H.  Some further notes on the use of matrices in population mathematics.  Biometrika. 35 (3–4), 213–245 (1948).

  2. Leslie P. H., Gower J. C.  The properties of a stochastic model for the predator–prey type of interaction between two species.  Biometrika. 47 (3–4), 219–234 (1960).

  3. Siez E., González-Olivares E.  Dynamics of a predator–prey model.  SIAM Journal on Applied Mathematics. 59 (5), 1867–1878 (2021).

  4. Ma Z.-P., Li W.-T.  Bifurcation analysis on a diffusive Holling–Tanner predator–prey model.  Applied Mathematical Modelling. 37 (6), 4371–4384 (2013).

  5. Li X., Jiang W., Shi J.  Hopf bifurcation and Turing instability in the reaction–diffusion Holling–Tanner predatorprey model.  IMA Journal of Applied Mathematics. 78 (2), 287–306 (2013).

  6. May R. M.  Limit cycles in predator–prey communities.  Science. 177 (4052), 900–902 (1972).

  7. Sun G.-Q., Zhang J., Song L.-P., Jin Z., Li B.-L.  Pattern formation of a spatial predator–prey system.  Applied Mathematics and Computation. 218 (22), 11151–11162 (2012).

  8. Mandal P. S., Banerjee M.  Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model.  Physica A: Statistical Mechanics and its Applications. 391 (4), 1216–1233 (2012).

  9. Chang L., Sun G.-Q., Wang Z., Jin Z.  Rich dynamics in a spatial predator–prey model with delay.  Applied Mathematics and Computation. 256, 540–550 (2015).

  10. Peixoto M. S., de Barros L. C., Bassanezi R. C.  Predator–prey fuzzy model.  Ecological Modelling. 214 (1), 39–44 (2008).

  11. Peixoto M. S., de Barros L. C., Bassanezi R. C.  An approach via fuzzy sets theory for predator-prey model.  Decision Making and Soft Computing. 9, 682–687 (2014).

  12. Yi F., Wei J., Shi J.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system.  Journal of Differential Equations. 246 (5), 1944–1977 (2009).

  13. Wang J., Shi J., Wei J.  Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey.  Journal of Differential Equations. 251 (4–5), 1276–1304 (2011).

  14. Song Y., Jiang H., Yuan Y.  Turing–Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator–prey model.  Journal of Applied Analysis & Computation. 9 (3), 1132–1164 (2019).

  15. Cao X., Jiang W.  Turing–Hopf bifurcation and spatiotemporal patterns in a diffusive predator–prey system with Crowley–Martin functional response.  Nonlinear Analysis: Real World Applications. 43, 428–450 (2018).

  16. Chattopadhyay J.  Effect of toxic substances on a two-species competitive system.  Ecological Modelling. 84 (1–3), 287–289 (1996).

  17. Clark W. C.  Mathematical Bioeconomics: The Optimal Management of Renewable Resources.  Wiley-Interscience (1990).

  18. Cohen Y.  Applications of control theory in ecology. Lecture Notes in Biomathematics.  Berlin, Heidelberg, New York, Tokyo, Springer (1987).

  19. Wei X., Wei J.  Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback.  Communications in Nonlinear Science and Numerical Simulation. 50, 241–255 (2017).

  20. Zhang X., Zhao H.  Dynamics and pattern formation of a diffusive predator–prey model in the presence of toxicity.  Nonlinear Dynamics. 95, 2163–2179 (2019).

  21. Smoller J.  Shock waves and reaction–diffusion equations. Vol. 258.  Springer Science & Business Media, New York (2012).

  22. Aziz-Alaoui M. A., Daher Okiye M.  Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling type II shemes.  Applied Mathematics Letters. 16 (7), 1069–1075 (2003).

  23. Daher Okiye M., Aziz-Alaoui M. A.  On the dynamics of a predator–prey model with the Holling–Tanner functional response.  270–278. MIRIAM Editions, Proc. ESMTB conf. (2002).

  24. Brezis H., Ciarlet P. G., Lions J. L.  Analyse fonctionnelle: theorie et applications. Vol. 91. Dunod Paris (1999).