MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation

: pp. 195–203
Received: June 08, 2022
Revised: September 25, 2022
Accepted: October 12, 2022
Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology
Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology

The objective of this research is to examine the steady incompressible two-dimensional hydromagnetic boundary layer flow of nanofluid passing through a stretched sheet in the influence of viscous and ohmic dissipations.  The present problem is obtained with the help of an analytical technique called DTM-Pade Approximation.  The mathematical modeling of the flow is considered in the form of the partial differential equation and is transformed into a differential equation through suitable similarity transformation.  The force of fixed parameters like thermophoresis number Nt, Brownian motion number Nb, Prandtl number Pr, Lewis number Le, Magnetic field $M$, suction/injection $S$ and Eckart number Ec are displayed with the aid of Figures.  Our outcomes showed a greater trend in the velocity profile for the parameters of magnetics $M$, suction $S$, and nonlinear stretching parameter $n$.  While the reverse trend is found against the temperature profile when the Prandtl number increases.  Lewis number and other parameters have shown increasing behavior in the concentration profile.

  1. Choi S. U. S., Eastman J. A.  Enhancing thermal conductivity of fluids with nanoparticles.  ASME international mechanical engineering congress and exposition.  San Francisco, 12–17 Nov 1995 (1995).
  2. Mustafa M., Khan J. A., Hayat T., Alsedi A.  Boundary layer flow of nanofluid over a nonlinearly stretching sheet with convective boundary condition.  IEEE Transactions on nanotechnology.  14 (1), 159–168 (2015).
  3. Khan W. A., Pop I.  Boundary layer flow of a nanofluid past a stretching sheet.  International Journal of Heat and Mass Transfer.  53 (11–12), 2477–2483 (2010).
  4. Hassani M., Mohammad Tabar M., Nemati H., Domairry G., Noori F.  An analytical solution for boundary layer flow of a nanofluid past stretching sheet.  International Journal of Thermal Sciences.  50 (11), 2256–2263 (2011).
  5. Jabeen K., Mushtaq M., Akram R. M.  Analysis of the MHd boundary layer flow over a non linear stretching seet in a porous medium using semianalytical approaches.  Mathematical Problem in Engineering.  2020, 3012854 (2020).
  6. Vennila B., Nithya N., Kabilan M.  Outcome of a magnetic field on heat transfer of carbon nanotubes (CNTs)-suspended nanofluids by shooting type  Laplace–Adomian Decompostion method (LADM).  In: Kondraivendhan B., Modhera C. D., Matsagar V. (eds)  Sustainable Building Materials and Construction. Lecture Notes in Civil Engineering. Vol. 222, 153–160 (2022).
  7. Mabood F., Khan W. A., Ismail A. I. M.  MHD boundary layer flow and heat transfer of nanofluid over a non linear stretching sheet: A numerical study.  Journal of Magnetism and Magnetic Materials.  374, 569–576 (2015).
  8. Mustafa M., Khan J. A.  Model for flow of cassonnanofluid past a non linearly stretching sheet considering magnetic field effects.  AIP Advances.  5 (7), 077148 (2015).
  9. Ellahi R., Alamri S. Z., Basit A., Majeed A.  Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation.  Journal of Taibah University of Science.  12 (4), 476–482 (2018).
  10. Rashid I., Sagheer M., Hussain S.  Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall.  Physica A: Statistical Mechanics and its Applications.  536, 122608 (2019).
  11. Japili N., Rosali H., Bachok N.  MHD stagnation point flow over a stretching sheet in a porous medium with velocity slip.  Mathematical Modeling and Computing.  9 (4), 825–832 (2022).
  12. Alias N., Hafidzuddin M. E. H.  Effect of suction and MHD induced Navier slip flow due ot non linear stretching/shrinking sheet.  Mathematical Modeling and Computing.  9 (1), 83–91 (2022).
  13. Malik M. Y., Hussain A., Salahuddin T., Awais M.  Effect of viscous dissipation on MHD boundary layer flow of sisko fluid over a stretching cylinder.  AIP Advances.  6, 035009 (2016).
  14. Prakash D., Narsu Sivakumar, Suriyakumar P., Rushikumar B.  Influence of viscous and ohmic heating on MHD flow of nanofluid over an inclined nonlinear stretching sheet embedded in a porous medium.  International Journal of Mechanical Engineering and Technology.  9 (8), 992–1001 (2018).
  15. Ganga B., Ansari M. Y. S., Vishnu Ganesh N., Abdul Hakeem A. K.  MHD radiative boundary layer flow of nanofluid past a vertical plate with internal heat generation/absorption, viscous and ohmic dissipation effects.  Journal of the Nigerian Mathematical Society.  34 (2), 181–194 (2015).
  16. Sheikholeslami M., Abelman S., Ganji D. D.  Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation.  International Journal of Heat and Mass Transfer.  79, 212–222 (2014).
  17. Nayak M. K.  MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radation and viscous dissipation.  International Journal of Mechanical Sciences. 124125, 185–193 (2017).
  18. Dogonchi A. S., Chamkha A. J., Seyyedi S. M., Hashemi–Tilehnoee M., Ganji D. D.  Viscous dissipation impact on free convection flow of Cu–water nanofluid in a circular enclosure with porosity considering internal heat sources.  Journal of Applied and Computational Mechanics.  5 (4), 717–726 (2019).
  19. Rashidi M. M., Rabiel F., Naseri Nila S., Abbasbandy S.  A review: Differential transform method for semi-analytical solution of differential equation.  International journal of Applied Mechanics and Engineering.  25 (2), 122–129 (2020).
  20. Usman M., Hamid M., Khan U., Mohyud Din S. T., Iqbal M. A., Wang W.  Differential transform method for unsteady nanofluid flow and heat transfer.  Alexandria Engineering Journal.  57 (3), 1867–1875 (2018).
  21. Saha D., Sengupta S.  Dual DTM-Pade approximations on for convection MHD mass transfer flow of nanofluid through a stretching sheet in presence of Soret and Dufour phenomena.  WSEAS Transactions on Fluid Mechanics.  15, 23–40 (2020).
  22. Sayyed S. R., Singh B. B., Makinde O. D., Bano N.  DTM–Pade approach to MHD slip flow and heat transfer over a radially stretching sheet with thermal radiation.  Latin American Applied Research.  50 (3), 175–184 (2020).
  23. Khashi'ie N. S., Wahi N., Arifin N. M., Ghani A. A., Hamzah K. B.  Effect of suction on the MHD flow in double-stratified micropolar fluid over a shrinking sheet.  Mathematical Modeling and Computing.  9 (1), 92–100 (2022).
  24. Yousif M. A., Hatamai M., Mahmod B. A., Rashidi M. M.  Thermal boundary layer ananlysis of nanofluid flow past over a stretching flat plate in differential transpiration conditions by using DTM–Pade method.  Journal of Mathematics and Computer Science.  17 (1), 84–95 (2017).
Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 195–203 (2023)

Uncaught exception thrown in session handler.

PDOException: SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate entry '0' for key 'uid': INSERT INTO {sessions} (sid, ssid, uid, cache, hostname, session, timestamp) VALUES (:db_insert_placeholder_0, :db_insert_placeholder_1, :db_insert_placeholder_2, :db_insert_placeholder_3, :db_insert_placeholder_4, :db_insert_placeholder_5, :db_insert_placeholder_6); Array ( [:db_insert_placeholder_0] => TmtjdqutBT_B5AeP7REM3pULzWOBLB2zCVVX1KyQUDU [:db_insert_placeholder_1] => TmtjdqutBT_B5AeP7REM3pULzWOBLB2zCVVX1KyQUDU [:db_insert_placeholder_2] => 0 [:db_insert_placeholder_3] => 0 [:db_insert_placeholder_4] => [:db_insert_placeholder_5] => nodeviewcount_views_limit|a:1:{i:29856;O:8:"DateTime":3:{s:4:"date";s:26:"2023-03-27 20:40:07.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:15:"Europe/Helsinki";}} [:db_insert_placeholder_6] => 1679938807 ) in _drupal_session_write() (line 209 of /home/science/public_html/includes/