Modeling the adaptive behavior of an agricultural pest population

: pp. 212–225
Received: January 06, 2022
Accepted: January 08, 2023
University of Bordeaux, IMB, UMR CNRS, 5251, Talence, France
Laboratoire: Systèmes Dynamiques et Applications, Faculty of Sciences, Department of Mathematics, University of Tlemcen, Algeria
Laboratoire: Systèmes Dynamiques et Applications, Faculty of Sciences, Department of Mathematics, University of Tlemcen, Algeria

In this work, we formulate a model describing the growth of a pest population with seasonal diapause at the larval stage.  The model includes the insect resistance to chemical treatments and their adaptation against a hostile environment. It consists on the description of three classes: the immature stage that includes eggs, larvae and pupae, and two mature stages corresponding to the vulnerable adult stage and the insecticide resistant adult stage.  The main result consists in an analytical approach for the existence of a nonnegative periodic solution.  The proof uses comparison results and Kamke's Theorem for cooperative systems.  As an important illustration, a threshold type result on the global dynamics of the pest population is given in terms of an index $R$.  When $R\leq 1$, the trivial solution is globally asymptotically stable.  When $R>1$, the positive periodic solution is globally asymptotically stable.  Numerical simulations confirm the analytical results.   

  1. CABI/EPPO, Lobesia botrana. [Distribution map]. In: Distribution Maps of Plant Pests. Wallingford, UK: CABI. Map 70; 2nd revision (2012).
  2. Ainseba B., Picart D., Thiéry D.  An innovation multistage phenologically structured population model to understand the European grapevine moth dynamics.  Journal of Mathematical Analysis and Applications.  382 (1), 34–46 (2011).
  3. Ainseba B., Bouguima S. M.  An adaptative model for a multistage structured population under fluctuation environment.  Discrete and Continuous Dynamical Systems – B.  25 (6), 2331–2349  (2020).
  4. Baumgärtner J., Gutierrez A. P., Pesolillo S., Severini M.  A model for the overwintering process of European grapevine moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae) populations.  Journal of Entomological and Acarological Research.  44 (1), e2 (2012).
  5. Civolani S., Boselli M., Butturini A., Chicca M., Fanoe E. A., Cassanelli S.  Assessment of Insecticide Resistance of Lobesia botrana (Lepidoptera: Tortricidae) in Emilia–Romagna Region.  Journal of Economic Entomology.  107 (3), 1245–1249 (2014).
  6. Picart D.  Modelisation et Estimation des Paramétres Liés es aux Succés Reproduction d'un Ravageur de la Vigne (Lobsia Botrana).  PhD Thesis. Bordeaux I University (2009).
  7. Thiéry D., Monceau K., Moreau J.  Larval intraspecific competition for food in the European grapevine moth Lobesia botrana.  Bulletin of Entomological Research.  104 (4), 517–524 (2014).
  8. Zalom F., Varela L., Cooper M.  European Grapevine Moth (Lobesia botrana).  University of California Agriculture and Natural Resources (2014).
  9. Touzeau J.  Modélisation de l'évolution de l'Eudémis de la Vigne pour la région Midi Pyrénées.  Bollettino di Zoologia Agraria e di Bachicoltura (series II).  16, 26–28 (1981).
  10. Kipiani A., Machavariani E. A., Sikharulidze E. I.  Biological protection of vineyards against the grape leaf-roller.  Sadovodstvo i Vinogradarstvo.  10, 23–25 (1990).
  11. Pease C. E., López–Olguín J. F., Pérez–Moreno I., Marco–Mancebón V.  Effects of Kaolin on Lobesia botrana (Lepidoptera: Tortricidae) and Its Compatibility With the Natural Enemy, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae).  Journal of Economic Entomology.  109 (2), 740–745 (2016).
  12. Gourley S. A., Liu R., Wu J.  Slowing the evolution of insecticide resistance in mosquitoes: a mathematical model.  Proceedings of the Royal Society A.  467 (2132), 2127–2148 (2011).
  13. Zhang X., Scarabel F., Wang X.-S., Wu J. Global continuation of periodic oscillations to a diapause rhythm.  Journal of Dynamics and Differential Equations.  34, 2819–2839 (2020).
  14. Lou Y., Liu K., He D., Gao D., Ruan S.  Modelling diapause in mosquito population growth.  Journal of Mathematical Biology.  78, 2259–2288 (2019).
  15. Smith H. L.  Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (Mathematical Surveys and Monographs). Vol. 41. American Mathematical Society (1995).
  16. Smith H. L., Thieme H R.  Monotone semi flow in scalar non-quasi-monotonic functional differential equations.  Journal of Mathematical Analysis and Applications.  150 (2), 289–306 (1990).
  17. Magal P., Seydi O., Wang F.-B.  Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models.  Journal of Mathematical Analysis and Applications.  479 (1), 450–481 (2019).
  18. Hale J. K.  Theory of Functional Differential Equations.  Applied Mathematical Sciences. Springer–Verlag, NY (1977).
  19. Walter W.  Differential and Integral Inequalities.  Springer–Verlag, Berlin–Heidelberg, NY (1970).
  20. Wang Y., Zhao X.-Q.  Convergence and subhomogeneous    discrte dynamical systems on product Banach spaces.  Bulletin of the London Mathematical Society.  35, 681–688 (2003).
  21. Takáč P.  Asymptotic behavior of discrete-time semigroups of    sublinear, strongly, increasing mapping with applications to biology.  Nonlinear Analysis: Theory, Methods & Applications.  14 (1), 35–42 (1990).
  22. Zhao X.-Q.  Global attractivity and stability in some monotone discrete dynamical systems.  Bulletin of the Australian Mathematical Society.  53 (2), 305–324 (1996).
  23. Knipling E. F.  The basic principles of insect population suppression and management.  Agriculture Handbook, no. 512. U.S. Dept. of Agriculture (1979).
  24. McNabb A.  Comparaison theorem for differential equations.  Journal of Mathematical Analysis and Applications.  119 (1–2), 417–428 (1986).
  25. Dishliev A. B., Bainov D. D.  Continuous dependence on the initial condition of the solution of a system of differential equations with variable structure and with impulses.  Publications of the Research Institute for Mathematical Sciences, Kyoto University.  23 (6), 923–936 (1987).
Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 212–225 (2023)

Uncaught exception thrown in session handler.

PDOException: SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate entry '0' for key 'uid': INSERT INTO {sessions} (sid, ssid, uid, cache, hostname, session, timestamp) VALUES (:db_insert_placeholder_0, :db_insert_placeholder_1, :db_insert_placeholder_2, :db_insert_placeholder_3, :db_insert_placeholder_4, :db_insert_placeholder_5, :db_insert_placeholder_6); Array ( [:db_insert_placeholder_0] => C1Foh1SGOHUYamvMwMigwHHPA_UCcgEIwYQ6Myz5kOo [:db_insert_placeholder_1] => C1Foh1SGOHUYamvMwMigwHHPA_UCcgEIwYQ6Myz5kOo [:db_insert_placeholder_2] => 0 [:db_insert_placeholder_3] => 0 [:db_insert_placeholder_4] => [:db_insert_placeholder_5] => nodeviewcount_views_limit|a:1:{i:29866;O:8:"DateTime":3:{s:4:"date";s:26:"2023-03-27 19:33:01.000000";s:13:"timezone_type";i:3;s:8:"timezone";s:15:"Europe/Helsinki";}} [:db_insert_placeholder_6] => 1679934781 ) in _drupal_session_write() (line 209 of /home/science/public_html/includes/