Multi-attribute group decision-making problem of medical consumption products based on extended TODIM-VIKOR approach with Fermatean fuzzy information measure

: pp. 80–100
Received: August 12, 2022
Revised: August 16, 2022
Accepted: October 08, 2022
Department of Mathematics and Humanities, MM Engineering College
Department of Mathematics and Humanities, MM Engineering College

The fundamental goal of this research is to develop a MAGDM (Multi-Attribute Group Decision Making) problem of Medical Consumption Products.  We propose TODIM–VIKOR approach in this paper, which combines the TODIM (an acronym in Portuguese for Interactive and Multi-criteria Decision-Making) and VIKOR (Vlsekriterijumska Optimizacija I Kompromisno Resenje) procedures under Fermatean fuzzy information.  A new Fermatean fuzzy scoring function is presented for dealing with comparison problems.  In addition, we introduce a novel entropy measure for assessing the degree of fuzziness associated with an FFS.  We also offer a Jensen–Shannon divergence measure for the Fermatean Fuzzy set that can be used to compare the discrimination information of two FFSs.  This suggested measure meets all mathematical standards for being considered a measure.  We introduced entropy and divergence measures to determine the objective weight in the TODIM–VIKOR approach.  Meanwhile, to deal with multiple attribute group decision-making, a new decision procedure based on the suggested Entropy and Jensen–Shannon divergence measure was proposed in a Fermatean Fuzzy environment.  In this article, TODIM has in view to find out the overall dominance degree, and VIKOR is to determine the compromise solution.  Finally, we manage a supplier selection problem to verify the performance of the suggested Fermatean fuzzy TODIM–VIKOR method by comparing the ranking solution to the rankings of existing methodologies.  We investigate the reliability and effectiveness of our proposed methodology.

  1. Zadeh L. A.  Fuzzy Sets. 394–432 (1996).
  2. Atanassov K. T.  Intuitionistic Fuzzy Sets.  In: Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing.  35, 1–137 (1999).
  3. Yager R. R.  Pythagorean fuzzy subsets.  2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). 57–61 (2013).
  4. Peng X., Yuan H., Yang Y.  Pythagorean fuzzy information measures and their applications.  International Journal of Intelligent Systems.  32 (10), 991–1029 (2017).
  5. Liao H., Qin R., Wu D., Yazdani M., Zavadskas E. K.  Pythagorean fuzzy combined compromise solution method integrating the cumulative prospect theory and combined weights for cold chain logistics distribution center selection.  International Journal of Intelligent Systems.  35 (12), 2009–2031 (2020).
  6. Guleria A., Bajaj R. K.  Pythagorean fuzzy $(R,S)$-norm information measure for multicriteria decision-making problem.  Advances in Fuzzy Systems.  2018, 8023013 (2018).
  7. Li Z., Lu M.  Some novel similarity and distance measures of pythagorean fuzzy sets and their applications.  Journal of Intelligent & Fuzzy Systems.  37 (2), 1781–1799 (2019).
  8. Rani P., Mishra A. R., Pardasani K. R., Mardani A., Liao H., Streimikiene D.  A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India.  Journal of Cleaner Production.  238, 117936 (2019).
  9. Yager R. R.  Generalized orthopair fuzzy sets.  IEEE Transactions on Fuzzy Systems.  25 (5), 1222–1230 (2016).
  10. Pang Q., Wang H., Xu Z.  Probabilistic linguistic term sets in multi-attribute group decision making.  Information Sciences.  369, 128–143 (2016).
  11. Arya V., Kumar S.  Fuzzy entropy measure with an applications in decision making under bipolar fuzzy environment based on TOPSIS method.  International Journal of Information and Management Sciences.  31 (2), 99–121 (2020).
  12. Qin J., Liu X., Pedrycz W.  An extended VIKOR method based on prospect theory for multiple attribute decision making under interval type-2 fuzzy environment.  Knowledge-Based Systems.  86, 116–130 (2015).
  13. Wei G.  Picture fuzzy cross-entropy for multiple attribute decision making problems.  Journal of Business Economics & Management.  17 (4), 491–502 (2016).
  14. Deng X., Gao H.  TODIM method for multiple attribute decision making with 2-tuple linguistic Pythagorean fuzzy information.  Journal of Intelligent & Fuzzy Systems.  37 (2), 1769–1780 (2019).
  15. Arya V., Kumar S.  Knowledge measure and entropy: a complementary concept in fuzzy theory.  Granular Computing.  6 (3), 631–643 (2021).
  16. Fan Z.-P., Zhang X., Chen F.-D., Liu Y.  Extended TODIM method for hybrid multiple attribute decision making problems.  Knowledge-Based Systems.  42, 40–48 (2013).
  17. Gomes L., Lima M.  TODIMI: Basics and Application to Multicriteria Ranking.  Foundations of computing and decision sciences.  16 (3–4), (1991).
  18. Krohling R. A., Pacheco A. G. C., Siviero A. L.  IF–TODIM: An intuitionistic fuzzy TODIM to multi-criteria decision making.  Knowledge-Based Systems.  53, 142–146 (2013).
  19. Lourenzutti R., Krohling R. A.  A study of TODIM in a intuitionistic fuzzy and random environment.  Expert Systems with Applications.  40 (16), 6459–6468 (2013).
  20. Wei G., Alsaadi F. E., Hayat T., Alsaedi A.  Bipolar Fuzzy Hamacher Aggregation Operators in Multiple Attribute Decision Making.  International Journal of Fuzzy Systems.  20 (1), 1–12 (2018).
  21. Nie R.-X., Wang J.-Q., Li L.  A shareholder voting method for proxy advisory firm selection based on 2-tuple linguistic picture preference relation.  Applied Soft Computing.  60, 520–539  (2017).
  22. Opricovic S.  Multicriteria Optimization of Civil Engineering Systems.  Faculty of Civil Engineering, Belgrade.  2 (1), 5–21 (1998).
  23. Opricovic S., Tzeng G.-H.  Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS.  European Journal of Operational Research.  156 (2), 445–455 (2004).
  24. Bhandari D., Pal N. R.  Some new information measures for fuzzy sets.  Information Sciences.  67 (3), 209–228 (1993).
  25. Mishra A. R., Jain D., Hooda D. S.  On fuzzy distance and induced fuzzy information measures.  Journal of Information and Optimization Sciences.  37 (2), 193–211 (2016).
  26. Raj Mishra A., Jain D., Hooda D. S.  On logarithmic fuzzy measures of information and discrimination.  Journal of Information and Optimization Sciences.  37 (2), 213–231 (2016).
  27. Hung W.-L., Yang M.-S.  On the $J$-divergence of intuitionistic fuzzy sets with its application to pattern recognition.  Information Sciences.  178 (6), 1641–1650 (2008).
  28. Vlachos I. K., Sergiadis G. D.  Intuitionistic fuzzy information – Applications to pattern recognition.  Pattern Recognition Letters.  28 (2), 197–206 (2007).
  29. Joshi R., Kumar S.  A dissimilarity Jensen–Shannon divergence measure for intuitionistic fuzzy sets.  International Journal of Intelligent Systems.  33 (11), 2216–2235 (2018).
  30. Chen R.-H., Lin Y., Tseng M.-L.  Multicriteria analysis of sustainable development indicators in the construction minerals industry in China.  Resources Policy.   46 (1), 123–133 (2015).
  31. Li Y., Shan Y., Liu P.  An extended TODIM method for group decision making with the interval intuitionistic fuzzy sets.  Mathematical Problems in Engineering.  2015, 672140 (2015).
  32. Yu S.-M., Wang J., Wang J.-Q.  An extended TODIM approach with intuitionistic linguistic numbers.  International Transactions in Operational Research.  25 (3), 781–805 (2018).
  33. Rani P., Jain D., Hooda D.  Extension of intuitionistic fuzzy TODIM technique for multi-criteria decision making method based on shapley weighted divergence measure.  Granular Computing.  4 (3), 407–420 (2019).
  34. Lu J., Wei C.  TODIM method for performance appraisal on social-integration-based rural reconstruction with interval-valued intuitionistic fuzzy information.  Journal of Intelligent & Fuzzy Systems.  37 (2), 1731–1740 (2019).
  35. Tian C., Peng J.  An integrated picture fuzzy ANP-TODIM multi-criteria decision-making approach for tourism attraction recommendation.  Technological and Economic Development of Economy.  26 (2), 331–354 (2020).
  36. Mishra A. R., Rani P., Pardasani K. R., Mardani A., Stević Ž., Pamučar D.  A novel entropy and divergence measures with multi-criteria service quality assessment using interval-valued intuitionistic fuzzy TODIM method.  Soft Computing.  24 (15), 11641–11661 (2020).
  37. Awasthi A., Kannan G.  Green supplier development program selection using NGT and VIKOR under fuzzy environment.  Computers & Industrial Engineering.  91, 100–108 (2016).
  38. Li N., Zhao H.  Performance evaluation of eco-industrial thermal power plants by using fuzzy GRA-VIKOR and combination weighting techniques.  Journal of Cleaner Production.  135, 169–183 (2016).
  39. Park J. H., Cho H. J., Kwun Y. C.  Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information.  Fuzzy Optimization and Decision Making.  10 (3), 233–253 (2011).
  40. Hashemi H., Bazargan J., Mousavi S. M., Vahdani B.  An extended compromise ratio model with an application to reservoir flood control operation under an interval-valued intuitionistic fuzzy environment.  Applied Mathematical Modelling.  38 (14), 3495–3511 (2014).
  41. Vahdani B., Salimi M., Mousavi S. M.  A compromise decision-making model based on VIKOR for multi-objective large-scale nonlinear programming problems with a block angular structure under uncertainty.  Scientia Iranica.  22 (6), 22571–2584 (2015).
  42. Wu L., Gao H., Wei C.  VIKOR method for financing risk assessment of rural tourism projects under interval-valued intuitionistic fuzzy environment.  Journal of Intelligent & Fuzzy Systems.  37 (2), 2001–2008 (2019).
  43. Rani P., Jain D., Hooda D.  Shapley function based interval-valued intuitionistic fuzzy VIKOR technique for correlative multi-criteria decision making problems.  Iranian Journal of Fuzzy Systems.  15 (1), 25–54 (2018).
  44. Ren Z., Xu Z., Wang H.  Dual hesitant fuzzy VIKOR method for multi-criteria group decision making based on fuzzy measure and new comparison method.  Information Sciences.  388, 1–16 (2017).
  45. Liao H., Xu Z.  A VIKOR-based method for hesitant fuzzy multi-criteria decision making.  Fuzzy Optimization and Decision Making.  12 (4), 373–392 (2013).
  46. Joshi R., Kumar S.  A new approach in multiple attribute decision making using exponential hesitant fuzzy entropy.  International Journal of Information and Management Sciences.  30 (4), 305–322 (2019).
  47. Liao H., Xu Z., Zeng X. J.  Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making.  IEEE Transactions on Fuzzy Systems.  23 (5), 1343–1355 (2014).
  48. Senapati T., Yager R. R.  Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making.  Informatica.  30 (2), 391–412 (2019).
  49. Shannon C. E.  A mathematical theory of communication.  The Bell system technical journal.  27 (3), 379–423 (1948).
  50. Lin J.  Divergence measures based on the Shannon entropy.  IEEE Transactions on Information theory.  37 (1), 145–151 (1991).
  51. Lu J., Tang X., Wei G., Wei C., Wei Y.  Bidirectional project method for dual hesitant Pythagorean fuzzy multiple attribute decision-making and their application to performance assessment of new rural construction.  International Journal of Intelligent Systems.  34 (8), 1920–1934 (2019).
  52. Wei G., Wang J., Lu M., Wu J., Wei C.  Similarity measures of spherical fuzzy sets based on cosine function and their applications.  IEEE Access.  7, 159069–159080 (2019).
  53. Zhang S., Wei G., Gao H., Wei C., Wei Y.  EDAS method for multiple criteria group decision making with picture fuzzy information and its application to green suppliers selections.  Technological and Economic Development of Economy.  25 (6), 1123–1138 (2019).
  54. Shahzadi G., Zafar F., Alghamdi M. A.  Multiple-attribute decision-making using Fermatean fuzzy Hama\-cher interactive geometric operators.  Mathematical Problems in Engineering.  2021, 5150933 (2021).
  55. Garg H., Shahzadi G., Akram M.  Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility.  Mathematical Problems in Engineering.  2020, 7279027 (2020).
  56. Akram M., Shahzadi G., Ahmadini A. A. H.  Decision-making framework for an effective sanitizer to reduce COVID-19 under Fermatean fuzzy environment.  Journal of Mathematics. 2020, 3263407 (2020).
Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 80–100 (2023)