We propose an approximation of pair correlations for solving the equations of the kinetic theory of long-wave (or large-scale) fluctuations in gaseous media. The basic ones are the general nonlinear equations of the large-scale fluctuations theory at the kinetic stage of system evolution, derived from the first principles of statistical mechanics. We show that based on the equations of the long-wave fluctuations kinetics in the case of weak interaction between particles, in the approximation of pair fluctuations it is possible to reproduce the main results of the quasi-linear theory of plasma. Thus, the well-known quasi-linear theory of plasma is provided with a first-principle justification.
- Akhiezer A. I., Peletminskii S. V. Methods of Statistical Physics. Pergamon, Oxford (1981).
- Bogolyubov N. Problems of Dynamical Theory in Statistical Physics. Providence College, Providence, RI (1959).
- Huang K. Statistical Mechanics. John Wiley & Sons, Inc., New York – London (1963).
- Alder B. J., Wainwright T. E. Decay of Velocity Autocorrelation Functions. Physical Review A. 1 (1), 18–21 (1970).
- Dorfman J. R., Cohen E. G. D. Velocity Correlation Function in Two and Three Dimensions. Physical Review Letters. 25 (18), 1257–1260 (1970).
- Ernst M. H., Hauge E. N., van Leewen J. M. Asymptotic Time Behaviour of Correlation Functions. Physical Review Letters. 25, 1254–1256 (1970).
- Zubarev D. N., Morozov V. G. Statistical mechanics of nonlinear hydrodynamic fluctuations. Physica A. 120 (3), 411–467 (1983).
- Peletminsky S., Slusarenko Y. On theory of long wave nonequilibrium fluctuations. Physica A. 210 (1–2), 165–204 (1994).
- Peletminsky S., Slusarenko Y., Sokolovsky A. Kinetics and hydrodynamics of long-wave fluctuations under external random force. Physica A. 326 (3–4), 412–429 (2003).
- Sliusarenko O. Yu., Slyusarenko Yu. V. Reduced description method in the kinetic theory of Brownian motion with active fluctuations. Journal of Physics A: Mathematical and Theoretical. 52, 445001 (2019).
- Nikolayenko S. O., Slyusarenko Yu. V. Theory of macroscopic fluctuations in systems of particles, interacting with hydrodynamic and gaslike media. Journal of Mathematical Physics. 51 (11), 113301 (2010).
- Silin V. P. Introduction to the kinetic theory of gases. Moscow, Science (1971), (in Russian).
- Ecker G. Theory of Fully Ionized Plasmas. Academic Press, New York and London (1972).
- Slyusarenko Yu. V., Sliusarenko O. Yu. Kinetic theory of weakly ionized dilute gas of hydrogen-like atoms of the first principles of quantum statistics and dispersion laws of eigenwaves. Journal of Mathematical Physics. 58 (11), 113302 (2017).
- Vedenov A. A. Quasi-linear plasma theory (theory of a weakly turbulent plasma). Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research. 5 (3), 169 (1963).
- Akhiezer A. I., Akhiezer I. A., Polovin\:R. V., Sitenko A. G., Stepanov K. N. Plasma Electrodynamics. Volume 1: Linear Theory. Volume 68 in International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford, New York (1975).
- Akhiezer A. I., Akhiezer I. A., Polovin R. V., Sitenko A. G., Stepanov K. N. Plasma Electrodynamics. Volume 2: Non-Linear Theory and Fluctuations. Volume 69 in International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford, New York (1975).
- Besse N., Elskens Y., Escande D., Bertrand P. Validity of quasilinear theory: refutations and new numerical confirmation. Plasma Physics and Controlled Fusion. 53 (2), 025012 (2011).
- Ledenev V. G., Starygin A. P. Quasilinear relaxation of a low-density electron beam in a plasma. Plasma Physics Reports. 29, 300–306 (2003).
- Hellinger P., Trávníček P. M. On the quasi-linear diffusion in collisionless plasmas (to say nothing about Landau damping). Physics of Plasmas. 19 (6), 062307 (2012).
- Jeong S. Y., Verscharen D., Wicks R. T., Fazakerley A. N. A Quasi-linear Diffusion Model for Resonant Wave-Particle Instability in Homogeneous Plasma. The Astrophysical Journal. 902 (2), 128 (2020).
- Brizard A. J., Chan A. A. Hamiltonian formulations of quasilinear theory for magnetized plasmas. Frontiers in Astronomy and Space Sciences. 9, 1010133 (2022).