Nonlinear dynamics of kinetic fluctuations and quasi-linear relaxation in plasma

2023;
: pp. 421–434
https://doi.org/10.23939/mmc2023.02.421
Received: January 03, 2023
Revised: April 12, 2023
Accepted: April 20, 2023

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 421–420 (2023)

1
Akhiezer Institute for Theoretical Physics, NSC Kharkiv Institute of Physics and Technology; Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Akhiezer Institute for Theoretical Physics, NSC Kharkiv Institute of Physics and Technology

We propose an approximation of pair correlations for solving the equations of the kinetic theory of long-wave (or large-scale) fluctuations in gaseous media.  The basic ones are the general nonlinear equations of the large-scale fluctuations theory at the kinetic stage of system evolution, derived from the first principles of statistical mechanics.  We show that based on the equations of the long-wave fluctuations kinetics in the case of weak interaction between particles, in the approximation of pair fluctuations it is possible to reproduce the main results of the quasi-linear theory of plasma.  Thus, the well-known quasi-linear theory of plasma is provided with a first-principle justification.

  1. Akhiezer A. I., Peletminskii S. V.  Methods of Statistical Physics.  Pergamon, Oxford (1981).
  2. Bogolyubov N.  Problems of Dynamical Theory in Statistical Physics.  Providence College, Providence, RI (1959).
  3. Huang K.  Statistical Mechanics.  John Wiley & Sons, Inc., New York – London (1963).
  4. Alder B. J., Wainwright T. E.  Decay of Velocity Autocorrelation Functions.  Physical Review A.  1 (1), 18–21 (1970).
  5. Dorfman J. R., Cohen E. G. D.  Velocity Correlation Function in Two and Three Dimensions.  Physical Review Letters.  25 (18), 1257–1260 (1970).
  6. Ernst M. H., Hauge E. N., van Leewen J. M.  Asymptotic Time Behaviour of Correlation Functions.  Physical Review Letters.  25, 1254–1256 (1970).
  7. Zubarev D. N., Morozov V. G.  Statistical mechanics of nonlinear hydrodynamic fluctuations.  Physica A.  120 (3), 411–467 (1983).
  8. Peletminsky S., Slusarenko Y.  On theory of long wave nonequilibrium fluctuations.  Physica A.  210 (1–2), 165–204 (1994).
  9. Peletminsky S., Slusarenko Y., Sokolovsky A.  Kinetics and hydrodynamics of long-wave fluctuations under external random force.  Physica A.  326 (3–4), 412–429 (2003).
  10. Sliusarenko O. Yu., Slyusarenko Yu. V.  Reduced description method in the kinetic theory of Brownian motion with active fluctuations.  Journal of Physics A: Mathematical and Theoretical.  52, 445001 (2019).
  11. Nikolayenko S. O., Slyusarenko Yu. V.  Theory of macroscopic fluctuations in systems of particles, interacting with hydrodynamic and gaslike media.  Journal of Mathematical Physics.  51 (11), 113301 (2010).
  12. Silin V. P.  Introduction to the kinetic theory of gases.  Moscow, Science (1971), (in Russian).
  13. Ecker G.  Theory of Fully Ionized Plasmas.  Academic Press, New York and London (1972).
  14. Slyusarenko Yu. V., Sliusarenko O. Yu.  Kinetic theory of weakly ionized dilute gas of hydrogen-like atoms of the first principles of quantum statistics and dispersion laws of eigenwaves.  Journal of Mathematical Physics.  58 (11), 113302 (2017).
  15. Vedenov A. A.  Quasi-linear plasma theory (theory of a weakly turbulent plasma).  Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research.  5 (3), 169 (1963).
  16. Akhiezer A. I., Akhiezer I. A., Polovin\:R. V., Sitenko A. G., Stepanov K. N.  Plasma Electrodynamics. Volume 1: Linear Theory.  Volume 68 in International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford, New York (1975).
  17. Akhiezer A. I., Akhiezer I. A., Polovin R. V., Sitenko A. G., Stepanov K. N.  Plasma Electrodynamics. Volume 2: Non-Linear Theory and Fluctuations.  Volume 69 in International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford, New York (1975).
  18. Besse N., Elskens Y., Escande D., Bertrand P.  Validity of quasilinear theory: refutations and new numerical confirmation.  Plasma Physics and Controlled Fusion.  53 (2), 025012 (2011).
  19. Ledenev V. G., Starygin A. P.  Quasilinear relaxation of a low-density electron beam in a plasma.  Plasma Physics Reports.  29, 300–306 (2003).
  20. Hellinger P., Trávníček P. M.  On the quasi-linear diffusion in collisionless plasmas (to say nothing about Landau damping).  Physics of Plasmas.  19 (6), 062307 (2012).
  21. Jeong S. Y., Verscharen D., Wicks R. T., Fazakerley A. N.  A Quasi-linear Diffusion Model for Resonant Wave-Particle Instability in Homogeneous Plasma.  The Astrophysical Journal.  902 (2), 128 (2020).
  22. Brizard A. J., Chan A. A.  Hamiltonian formulations of quasilinear theory for magnetized plasmas.  Frontiers in Astronomy and Space Sciences.  9, 1010133 (2022).