Temperature stresses in a rectangular two-layer plate under the action of a locally distributed temperature field

: pp. 435–444
Received: October 26, 2022
Revised: April 21, 2023
Accepted: May 15, 2023
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

A rectangular isotropic two-layer plate of an irregular structure is considered, the edges of which are freely supported, and a constant temperature is maintained on them.  Two-dimensional Kirchhoff-type thermoelasticity equations and two-dimensional heat equations written for an inhomogeneous material were used to study the temperature stresses in the plate.  Using the method of double trigonometric series in spatial variables and the Laplace integral transformation over time, the general solutions of boundary value problems of thermoelasticity and heat conductivity for this plate under the action of a locally distributed temperature field specified at the initial moment of time are written down.  The normal stresses in the layers of the plate are numerically analyzed depending on the geometric parameters, heat transfer coefficient, and time.

  1. Reddy J. N.  Mechanics of laminated composite plates and shells. Theory and analysis.  New York, CRC Press (2004).
  2. Hetnarski R. (ed.)  Encyclopedia of Thermal Stresses. Springer, vol. 11 (2014).
  3. Kolyano Yu. M.  Methods of heat conductivity and thermoelasticity of heterogeneous bodies.  Кyiv, Naukova dumka (1976).
  4. Zhydyk U. V., Flyachok V. M.  Thermoelastic analysis of heterogeneous anisotropic plates.  Scientific notes.  33, 281–287 (2011).
  5. Brischetto S., Carrera E.  Heat conduction and thermal analysis in multilayered plates and shells.  Mechanics Research Communications.  38 (6), 449–455 (2011).
  6. Houari M. S. A., Benyoucef S., Mechab I., Tounsi A., Bedia E. A. A.  Two-variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates.  Journal of Thermal Stresses.  34 (1), 315–334 (2011).
  7. Naik N. S., Sayyad A. S.  An accurate computational model for thermal analysis of laminated composite and sandwich plates.  Journal of Thermal Stresses.  42 (5), 559–579 (2019).
  8. Manthena V. R., Kedar G. D.  On thermoelastic problem of a thermosensitive functionally graded rectangular plate with instantaneous point heat source.  Journal of Thermal Stresses.  42 (7), 849–862 (2019).
  9. Manthena V. R., Lamba N. K., Kedar G. D.  Transient thermoelastic problem of a nonhomogeneous rectangular plate.  Journal of Thermal Stresses.  40 (5), 627–640 (2017).
  10. Qjuhua L., Hou P., Shang S.  Three-dimensional exact analytical solutions of transversely isotropic plate under heat sources.  Journal of Thermal Stresses.  44 (11), 1324–1348 (2021).
  11. Zghal S., Trabelsi S., Frikha A., Dammak F.  Thermal free vibration analysis of FG plates and panels with an improved finite shell element.  Journal of Thermal Stresses.  44 (3), 315–341 (2021).
  12. Varelis D., Saravanos D. A.  A coupled nonlinear plate finite element for thermal buckling and postbuckling of piezoelectric composite plates including thermo-electro-mechanical effects.  Journal of Thermal Stresses.  45 (1), 30–50 (2022).
  13. Javaheri R., Eslami M. R.  Thermal buckling of functionally graded plates.  AIAA Journal.  40 (1), 162–169 (2002).
  14. Hachkevych O. R., Musij R. S., Melnyk N. B., Dmytruk V. A.  Dynamic thermoelastic processes in conductive plate under the action of electromagnetic pulses of microsecond and nanosecond durations.  Journal of Thermal Stresses.  42 (9), 1110–1122 (2019).
  15. Musii R. S., Zhydyk U. V., Turchyn Ya. B., Svidrak I. H., Baibakova I. M.  Stressed and strained state of the layered cylindrical shell under local convective heating.  Mathematical Modeling and Computing.  9 (1), 143–151 (2022).
  16. Thai H.-T., Kim S.-E.  A review of theories for the modeling and analysis of functionally graded plates and shells.  Composite Structures.  128 (1), 70–86 (2015).
  17. Swaminathan K., Sangeetha D. M.  Thermal analysis of FGM plates – a critical review of various modeling techniques and solution methods.  Composite Structures.  160 (1), 43–60 (2017).
Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 435–444 (2023)