In this paper we develop and generalize the estimator of regression function for surrogate scalar response variable given a functional random one. Then, we build up some asymptotic properties in terms of the almost complete convergences, depending in the result we show the superiority of our estimator in term of prediction.
- Duncan G. J., Hill D. H. An investigation of the extent and consequences of measurement error in labor-economic survey data. Journal of Labor Economics. 3 (4), 508–532 (1985).
- Carroll R. J., Wand M. P. Semiparametric estimation in logistic measurement error modelss. Journal of the Royal Statistical Society. 53 (3), 573–585 (1991).
- Pepe M. S. Inference using surrogate outcome data and validation sample. Biometrika. 79 (2), 355–365 (1992).
- Ferraty F., Vieu P. Nonparametric Functional Data Analysis. Theory and Practice. New York, Springer Series in Statistics (2006).
- Ferraty F., Laksaci A., Tadj A., Vieu P. Rate of uniform consistency for nonparametric estimates with functional variables. Journal of Statistical Planning and Inference. 140 (2), 335–352 (2010).
- Firas I., Ali Hajj H., Rachdi M. Regression model for surrogate data in high dimensional statistics. Journal of Communications in Statistics – Theory and Methods. 49 (13), 3206–3227 (2019).
- Kolmogorov A. N., Tikhomirov V. M. $\epsilon$-entropy and $\epsilon$-capacity of sets in function spaces. Uspekhi Matematicheskikh Nauk. 14 (2 (86)), 3–86 (1959).