A mathematical study of the COVID-19 propagation through a stochastic epidemic model

2023;
: pp. 784–795
https://doi.org/10.23939/mmc2023.03.784
Received: February 16, 2023
Revised: July 09, 2023
Accepted: July 12, 2023

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 784–795 (2023)

1
LPAIS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2
LPAIS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
3
LPAIS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco

The COVID-19 is a major danger that threatens the whole world.  In this context, mathematical modeling is a very powerful tool for knowing more about how such a disease is transmitted within a host population of humans.  In this regard, we propose in the current study a stochastic epidemic model that describes the COVID-19 dynamics under the application of quarantine and coverage media strategies, and we give a rigorous mathematical analysis of this model to obtain an overview of COVID-19 dissemination behavior.

  1. Jia J., Ding J., Liu S., Liao G., Li J., Duan B., Wang G., Zhang R.  Modeling the control of COVID-19: Impact of policy interventions and meteorological factors.  Preprint arXiv:2003.02985 (2020).
  2. Pawar D. D., Patil W. D., Raut D. K.  Fractional-order mathematical model for analysing impact of quarantine on transmission of COVID-19 in India.  Mathematical Modeling and Computing.  8 (2), 253–266 (2021).
  3. Ilnytskyi J. M.  Modeling of the COVID-19 pandemic in the limit of no acquired immunity.  Mathematical Modeling and Computing.  8 (2), 282–303 (2021).
  4. Yavorska O., Bun R.  Spatial analysis of COVID-19 spread in Europe using "center of gravity" concept.  Mathematical Modeling and Computing.  9 (1), 130–142 (2022).
  5. Kouidere A., Elhia M., Balatif O.  A spatiotemporal spread of COVID-19 pandemic with vaccination optimal control strategy: A case study in Morocco.  Mathematical Modeling and Computing.  10 (1), 171–185 (2023).
  6. Mao X.  Stochastic differential equations and applications.  Woodhead Publishing (2007).
  7. Karatzas I., Shreve S. E.  Brownian Motion and Stochastic Calculus. Springer New York, NY (1998).
  8. Zhao Y., Jiang D.  The threshold of a stochastic SIS epidemic model with vaccination.  Applied Mathematics and Computation.  243, 718–727 (2014).
  9. Yin S.  A New Generalization on Cauchy–Schwarz Inequality.  Journal of Function Spaces.  2017, 9576375 (2017).
  10. Song Y., Miao A., Zhang T., Wang X., Liu J.  Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible.  Advances in Difference Equations.  2018, 293 (2018).
  11. Sun F.  Dynamics of an imprecise stochastic Holling II one-predator two-prey system with jumps.  Preprint arXiv:2006.14943 (2020).
  12. Nicholson J., Clapham C.  The Concise Oxford Dictionary of Mathematics.  Vol. 5. Oxford University Press Oxford (2014).
  13. Tang B., Wang X., Li Q., Bragazzi N. L., Tang S., Xiao Y., Wu J.  Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions.  Journal of Clinical Medicine.  9 (2), 462 (2020).
  14. Wu J., Tang B., Bragazzi N. L., Nah K., McCarthy Z.  Quantifying the role of social distancing, personal protection and case detection in mitigating COVID-19 outbreak in Ontario, Canada.  Journal of Mathematics in Industry.  10, 15 (2020).
  15. Public Health Ontario.  Ontario COVID-19 Data Tool.  PHO official website (2020).