A metaheuristic approach to improve consistency of the pairwise matrix in AHP

: pp. 1164–1173
Received: August 20, 2023
Revised: November 02, 2023
Accepted: November 03, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1164–1173 (2023)

Faculty of Sciences, Moulay Ismail University
Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University
Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University
Faculty of Sciences, Moulay Ismail University

In this paper, we are interested in modifying inconsistent pairwise comparison matrix which is a critical step in the AHP methodology, where decision makers have to improve the consistency by revising the process.  To this end, we propose an improved genetic algorithm (GA) to allow decision makers to find an appropriate matrix and adjust the consistency of their judgment without loss of original comparison matrix.  Numerical results with different dimensions of matrices taken randomly show the effectiveness of these strategy to improve and identify the consistency of pairwise matrix which mean that GAs are a very good tool to generate the consistent pairwise comparison matrices with different number of criteria.

  1. Saaty T. L.  The Analytic Hierarchy Process.  McGraw-Hill, New York (1980).
  2. Saaty T. L.  Homogeneity and clustering in AHP ensures the validity of the scale.  European Journal of Operational Research.  72 (3), 598–601 (1994).
  3. Breaz R. E., Bologa O., Racz S. G.  Selecting industrial robots for milling applications using AHP.  Procedia Computer Science.  122, 346–353 (2017).
  4. Greiner M. A., Fowler J. O., Shunk D. L., Carlyle W. M., McNutt R. T.  A hybrid approach using the analytic hierarchy process and integer programming to screen weapon systems projects.  IEEE Transactions on Engineering Management.  50 (2), 192–203 (2003).
  5. Vaidya O. S., Kumar S.  Analytic hierarchy process: An overview of applications.  European Journal of Operational Research.  169 (1), 1–29 (2006).
  6. Lance E. F., Verdini W. A.  A consistency test for AHP decision makers.  Decision Sciences.  20 (3), 575–590 (1989).
  7. Murphy C. K.  Limits on the Analytic Hierarchy Process from its consistency index.  European Journal of Operational Research.  65 (1), 138–139 (1993).
  8. Saaty T. L.  Some mathematical concepts of the analytic hierarchy process.  Behaviormetrika.  18 (29), 1–9 (1991).
  9. Ergu D., Kou G., Peng Y., Shi Y.  A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP.  European Journal of Operational Research.  213 (1), 246–259 (2011).
  10. Cao D., Leung L. C., Law J. S.  Modifying inconsistent comparison matrix in analytic hierarchy process: A heuristic approach.  Decision Support Systems.  44 (4), 944–953 (2008).
  11. Linares P.  Are inconsistent decisions better? An experiment with pairwise comparisons.  European Journal of Operational Research.  193 (2), 492–498 (2009).
  12. Saaty T. L.  Decision-making with the AHP: Why is the principal eigenvector necessary.  European Journal of Operational Research.  145 (1), 85–91 (2003).
  13. Goldberg D. E.  Genetic Algorithm in Search, Optimisation and Machine Learning.  Addison-Wesley, Reading (1989).
  14. Michalewicz Z.  Genetic Algorithms + Data Structures = Evolution Programs.  Springer-Verlag, Berlin (1996).
  15. Mera N. S., Elliott L., Ingham D. B.  A Real Coded Genetic Algorithm Approach for Detection of Subsurface Isotropic and Anisotropic Inclusions.  Inverse Problems in Engineering.  11 (2), 157–173 (2003).
  16. Jouilik B., Tajani C., Daoudi J., Abouchabaka J.  Numerical Optimization Algorithm Based On Genetic Algorithm For A Data Completion Problem.  TWMS Journal of Applied and Engineering Mathematics.  13 (1), 86–97 (2023).
  17. Costa J. F. D. S.  A Genetic Algorithm to Obtain Consistency in Analytic Hierarchy Process.  Brazilian Journal of Operations & Production Management.  8 (1), 55–64 (2011).
  18. Fei L., Guangzhou Z.  Study of genetic algorithm with reinforcement learning to solve the TSP.  Expert Systems with Applications.  36 (3),  6995–7001 (2009).