Reconstruction of the depletion layer in MOSFET by genetic algorithms

: pp. 96–103
Received: February 22, 2020
Revised: March 18, 2020
Accepted: March 20, 2020

Mathematical Modeling and Computing, Vol. 7, No. 1, pp. 96–103 (2020)

Laboratory of Applied Mathematics and Computer Science, Faculty of Science and Technology, Cady Ayyad University
Laboratory of Applied Mathematics and Computer Science, Faculty of Science and Technology, Cady Ayyad University

In this work, the MOSFET device is considered.  The carrier densities in the MOSFET are modeled by the drift-diffusion equation.  We manipulate the formulas of the charge density at the equilibrium in order to derive a simple Poisson's or Laplace's equation.  To formulate a shape optimization problem, we have defined a cost functional.  The existence of an optimal solution is proved.  To solve the involved optimization problem, we have designed a numerical approach based on the finite element method combined with the genetic algorithm.  Several numerical examples are established to prove the validity of the proposed approach.

  1. Abouchabaka J., Aboulaich R., Guennoun O., Nachaoui A., Souissi A.  Shape optimization for a simulation of a semiconductor problem.  Mathematics and Computers in Simulation. 56, 1–16 (2001).
  2. Friedman A. A.  Free Boundary Problems Associated with Multiscale Tumor Models.  Mathematical Modeling of Natural Phenomena. 4 (3), 134–155 (2009).
  3. Ellabib A., Nachaoui A.  On the numerical solution of a free boundary identification problem.  Inverse Problems in Engineering. 9, 235–260 (2001).
  4. Sze S. M.  Semiconductor Devices: Physics and Technology.  John Wiley and Sons, New Jersey (1985).
  5. Zhang R., Sun J.  The reconstruction of obstacles in a waveguide using finite elements.  Journal of Computational Mathematics. 36, 29–46 (2017).
  6. Ciarlet P. G.  The Finite Element Method for Elliptic Problems.  Studies in mathematics and its applications. North Holland (1978).
  7. Goldberg D. E.  Genetic Algorithm in search, optimisation, and machine learning.  Addison–Wesley, Reading, MA (1989).
  8. Pironneau O.  Optimal Shape Design for Elliptic Systems.  In: Drenick R. F., Kozin F. (eds) System Modeling and Optimization.  Lecture Notes in Control and Information Sciences, vol. 38. Springer, Berlin, Heidelberg, p. 42–66 (2005).
  9. Chakib A., Nachaoui A., Nachaoui M.  Existence analysis of an optimal shape design problem with non coercive state equation.  Nonlinear Analysis: Real World Applications. 28, 171–183 (2016).
  10. Holland J.  Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence.  MIT press (1975).
  11. Prautzsch H., Boehm W., Paluszny M.  Bézier and B-Spline Techniques.  Springer–Verlag, Berlin, Heidelberg (2002).
  12. Persson P. O., Strang G.  A Simple Mesh Generator in MATLAB.  SIAM Review. 46, 329–345 (2004).
  13. Demengel G., Pouget J. P.  Modèles de Béziers, de B-splines et de NURBS: Mathématiques des courbes et des surfaces.  Ellipses (1998).