Dynamics of an ecological prey–predator model based on the generalized Hattaf fractional derivative

2024;
: pp. 166–177
https://doi.org/10.23939/mmc2024.01.166
Received: June 22, 2023
Revised: February 06, 2024
Accepted: February 11, 2024

Assadiki F., El Younoussi M., Hattaf K., Yousfi N. Dynamics of an ecological prey–predator model based on the generalized Hattaf fractional derivative.  Mathematical Modeling and Computing. Vol. 11, No. 1, pp. 166–177 (2024)

1
Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca
2
Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca
3
Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, Casablanca, Morocco; Centre Régional des Métiers de l'Education et de la Formation (CRMEF), Casablanca, Morocco
4
Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca

In this paper, we propose and analyze a fractional prey–predator  model with generalized Hattaf fractional (GHF) derivative.  We prove that our proposed model is ecologically and mathematically well-posed.  Furthermore, we show that our model has three equilibrium points.  Finally, we establish the stability of these equilibria.

  1. Lotka A. J.  A Natural Population Norm I and II. Academy of Sciences, Washington (1913).
  2. Volterra V.  Fluctuations in the abundance of a species considered mathematically.  Nature.  118, 558–560 (1926).
  3. Kar T. K.  Stability analysis of a prey–predator model incorporating a prey refuge.  Communications in Nonlinear Science and Numerical Simulation.  10 (6), 681–691 (2005).
  4. Garain K., Kumar U., Mandal P. S.  Global dynamics in a Beddington–DeAngelis prey–predator model with density dependent death rate of predator.  Differential Equations and Dynamical Systems.  29, 265–283 (2021).
  5. Cheneke K. R., Rao K. P., Edessa G. K.  Application of a new generalized fractional derivative and rank of control measures on cholera transmission dynamics.  International Journal of Mathematics and Mathematical Sciences.  2021, 2104051 (2021).
  6. Ghanbari B., Djilali S.  Mathematical and numerical analysis of a three-species predator–prey model with herd behavior and time fractional-order derivative.  Mathematical Methods in the Applied Sciences.  43 (4), 1736–1752 (2020).
  7. Acay B., Bas E., Thabet A.  Fractional economic models based on market equilibrium in the frame of different type kernels.  Chaos, Solitons & Fractals.  130, 109438 (2020).
  8. Bachraoui M., Hattaf K., Yousfi N.  Spatiotemporal dynamics of fractional hepatitis B virus infection model with humoral and cellular immunity.  BIOMAT 2020: Trends in Biomathematics: Chaos and Control in Epidemics, Ecosystems, and Cells.  293–313 (2020).
  9. Bachraoui M., Ichou M. A., Hattaf K., Yousfi N.  Spatiotemporal dynamics of a fractional model for hepatitis B virus infection with cellular immunity.  Mathematical Modelling of Natural Phenomena.  16, 5 (2021).
  10. El Younoussi M., Hajhouji Z., Hattaf K., Yousfi N.  A new fractional model for cancer therapy with M1 oncolytic virus.  Complexity.  2021, 9934070 (2021).
  11. Rasheed A., Shoaib Anwar M.  Interplay of chemical reacting species in a fractional viscoelastic fluid flow.  Journal of Molecular Liquids.  273, 576–588 (2019).
  12. Ladaci S., Bensafia Y.  Indirect fractional order pole assignment based adaptive control.  Engineering Science and Technology, an International Journal.  19 (1), 518–530 (2016).
  13. Ahmed E., El-Sayed A. M. A., El-Saka H. A. A.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models.  Journal of Mathematical Analysis and Applications.  325 (1), 542–553 (2007).
  14. Javidi M., Nyamoradi N.  Dynamic analysis of a fractional order prey–predator interaction with harvesting.  Applied Mathematical Modelling.  37 (20–21), 8946–8956 (2013).
  15. Ghaziani R. K., Alidousti J., Eshkaftaki A. B.  Stability and dynamics of a fractional order Leslie–Gower prey–predator model.  Applied Mathematical Modelling.  40 (3), 2075–2086 (2016).
  16. Hattaf K.  A new generalized definition of fractional derivative with non-singular kernel. Computation.  8 (2), 49 (2020).
  17. Caputo M., Fabrizio M.  A new definition of fractional derivative without singular kernel.  Progress in Fractional Differentiation and Applications.  1, 73–85 (2015).
  18. Atangana A., Baleanu D.  New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model.  Thermal Science.  20 (2), 763–769 (2016).
  19. Al-Refai M.  On weighted Atangana–Baleanu fractional operators.  Advances in Difference Equations.  2020, 3 (2020).
  20. Hattaf K.  Stability of Fractional Differential Equations with New Generalized Hattaf Fractional Derivative.  Mathematical Problems in Engineering.  2021, 8608447 (2021).
  21. Hattaf K., Mohsen A. A., Al-Husseiny H. F.  Gronwall inequality and existence of solutions for differential equations with generalized Hattaf fractional derivative.  Journal of Mathematics and Computer Science.  27 (1), 18–27 (2022).
  22. Zine H., Lotfi E. M., Torres D. F., Yousfi N.  Taylor's formula for generalized weighted fractional derivatives with nonsingular kernels.  Axioms.  11 (5), 231 (2022).
  23. Hattaf K.  On the stability and numerical scheme of fractional differential equations with application to biology.  Computation.  10 (6), 97 (2022).