Embedding physical laws into Deep Neural Networks for solving generalized Burgers–Huxley equation

: pp. 505–511
Received: December 27, 2023
Accepted: May 25, 2024

Hariri I., Radid A., Rhofir K.  Embedding physical laws into Deep Neural Networks for solving generalized Burgers–Huxley equation.  Mathematical Modeling and Computing. Vol. 11, No. 2, pp. 505–511 (2024)

LMFA, FSAC, Hassan II University of Casablanca
LMFA, FSAC, Hassan II University of Casablanca
LASTI, ENSAK, University of Sultan Moulay Slimane

Among the difficult problems in mathematics is the problem of solving partial differential equations (PDEs).  To date, there is no technique or method capable of solving all PDEs despite the large number of effective methods proposed.  One finds in the literature, numerical methods such as the methods of finite differences, finite elements, finite volumes and their variants, semi-analytical methods such as the Variational Iterative Method, New Iterative Method and others.  In recent years, we have witnessed the introduction of neural networks in solving PDEs.  In this work, we will propose an adaptation of the method of embedding some physical laws into neural networks for solving Burgers–Huxley equation and revealing the dynamic behavior of the equation directly from spatio-temporal data.  We will combine our technique with the Residual-based Adaptive Refinement method to improve its accuracy.  We will give a comparison of the proposed method with those obtained by the New Iterative Method.

  1. Bateman H.  Some recent researches on the motion of fluids.  Monthly Weather Review.  43 (4), 163–170 (1915).
  2. Whitham G. B.  Linear and Nonlinear Waves.  Wiley, New York (2011).
  3. Burgers J. M.  A mathematical model illustrating the theory of turbulence.  Advances in Applied Mechanics.  1, 171–199 (1948).
  4. Hodgkin A. L., Huxley A. F.  A quantitative description of membrane current and its application to conduction and excitation in nerve.  The Journal of Physiology.  117 (4), 500–544 (1952).
  5. Batiha B., Ghanim F., Batiha K.  Application of the New Iterative Method (NIM) to the Generalized Burgers–Huxley Equation.  Symmetry.  15 (3), 688 (2023).
  6. Satsuma J.  Topics in soliton theory and exactly solvable nonlinear equations.  World Scientifc, Singapore (1987).
  7. Inan B.  Finite difference methods for the generalized Huxley and Burgers–Huxley equations.  Kuwait Journal of Science.  44 (3), 20–27 (2017).
  8. Batiha B., Noorani M. S. M., Hashim I.  Application of variational iteration method to the generalized Burgers–Huxley equation.  Chaos, Solitons & Fractals.  36 (3), 660–663 (2008).
  9. Hashim I., Noorani M., Al-Hadidi M. S.  Solving the generalized Burgers–Huxley equation using the Adomian decomposition method.  Mathematical and Computer Modelling.  43 (11–12), 1404–1411 (2006).
  10. Biazar J., Mohammadi F.  Application of Differential Transform Method to the Generalized Burgers-Huxley Equation.  Applications and Applied Mathematics: An International Journal.  05 (10), 1726-1740 (2011).
  11. Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C.  Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition.  Knowledge-Based Systems.  229, 107340 (2021).
  12. Gao Y., Mosalam K. M.  Deep Transfer Learning for Image-Based Structural Damage Recognition.  Computer-Aided Civil and Infrastructure Engineering.  33 (9), 748–768 (2018).
  13. Yang X., Zhang Y., Lv W., Wang D.  Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier.  Renewable Energy.  163, 386–397 (2021).
  14. Ruder S., Peters M. E., Swayamdipta S., Wolf T.  Transfer Learning in Natural Language Processing.  Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials.  15–18 (2019).
  15. Wen Y., Chaolu T.  Study of Burgers–Huxley Equation Using Neural Network Method.  Axioms.  12 (5), 429 (2013).
  16. Panghal S., Kumar M.  Approximate Analytic Solution of Burger Huxley Equation Using Feed-Forward Artificial Neural Network.  Neural Processing Letters.  53, 2147–2163 (2021).
  17. Kumar H., Yadav N., Nagar A. K.  Numerical solution of Generalized Burger–Huxley & Huxley's equation using Deep Galerkin neural network method.  Engineering Applications of Artificial Intelligence.  115, 105289 (2022).
  18. Raissi M., Perdikaris P., Karniadakis G.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.  Journal of Computational Physics.  378, 686–707 (2019).
  19. Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F.  Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next.  Journal of Scientific Computing.  92, 88 (2022).
  20. Wu C., Zhu M., Tan Q., Kartha Y., Lu L.  A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks.  Computer Methods in Applied Mechanics and Engineering.  403 (A), 115671 (2023).