Mathematical modeling of mechanical properties in the permeation of green hydrogen through membrane separation materials

2024;
: pp. 359–372
https://doi.org/10.23939/mmc2024.02.359
Received: August 29, 2023
Revised: April 02, 2024
Accepted: April 05, 2024

Hairch Y., Medarhri I., Jraifi A., Elmlouky A. Mathematical modeling of mechanical properties in the permeation of green hydrogen through membrane separation materials. Mathematical Modeling and Computing. Vol. 11, No. 2, pp. 359–372 (2024)

1
LPMC-Laboratory, University Chouaib Doukkali; ISTM-Laboratory, FS, Chouaib Doukkali University
2
MMCS Team, LMAID Laboratory, ENSMR-Rabat
3
MISCOM-Laboratory, ENSA-S, University Cadi Ayyad
4
LPMC-Laboratory, University Chouaib Doukkali

The potential role of hydrogen in the future of energy has generated significant enthusiasm, despite the fact that it might not completely replace oil.  Hydrogen, with its lengthy history and established place in long-term strategies and global perspectives, is seen as a pivotal player in the energy transition.  Currently, hydrogen finds primary use in industrial applications like ammonia production, oil refining, and steel manufacturing, targeting energy-intensive sectors where ammonia and oil refinement are prioritized.  However, the reliance on fossil fuels is contributing to economic vulnerability and a climate emergency within the ongoing energy crisis, spurring a global transition towards more sustainable and cleaner alternatives.  Many countries are seeking to strengthen their energy security by pursuing renewable and clean energy sources, and classical polymer behavior is being utilized to drive this transition.  In recent decades, membrane science has emerged as a powerful tool for developing new industrial processes that support sustainable industrial growth.  In this study, we focus on the separation of hydrogen using membrane for hydrogen recovery.  In particular, membrane technology has been widely accepted for gas separation to achieve high filtration.  In this paper, we performed numerical calculations of the key physical parameters influencing hydrogen production: concentration, permeability and pressure.  The verification of our study's credibility was using by comparing the experimental permeation flux and its responsiveness to alterations in hydrogen partial pressure.

  1. Johnsson F., Kjärstad J., Rootzén J.  The threat to climate change mitigation posed by the abundance of fossil fuels.  Climate Policy.  19 (2), 258–274 (2019).
  2. Adhikari S., Fernando S.  Hydrogen Membrane Separation Techniques.  Industrial & Engineering Chemistry Research.  45 (3), 875–881 (2006).
  3. Fatsikostas A. N., Kondarides D. I., Verykios X. E.  Production of Synthesis Gases from Ethanol Steam Reforming Process.  Catalysis Today.  75 (1-4), 145–155 (2002).
  4. Abe J. O., Popoola A. P., Ajenifuja E., Popoola O M.  Hydrogen energy, economy and storage: Review and recommendation.  International Journal of Hydrogen Energy.  44 (29), 15072–15086 (2019).
  5. Kurbanbekov S., Skakov M., Baklanov V., Karakozov B.  Effect of spark plasma sintering temperature on structure and phase composition of Ti-Al-Nb-based alloys.  Materials Testing.  59, 1033–1036 (2017).
  6. Kaliyeva A., Tileuberdi Y., Galfetti I., Ongarbayev Y.  Effect of Mechanical Activation on the Reactivity of Composites for Flameless Heaters.  Eurasian Chemico-Technological Journal.  22 (2), 141–147 (2020).
  7. Kaipoldayev O., Mukhametkarimov Ye., Nemkaeva R., Baigarinova G., Aitzhanov M., Muradov A., Guseinov N.  Studying of 2D Titanium Carbide Structure by Raman Spectroscopy after Heat Treatment in Argon and Hydrogen Atmospheres.  Eurasian Chemico-Technological Journal.  19 (2), 197–200 (2017).
  8. Fan Y., Wang X., Chen Z., Wu L., Luo S., Li N.  Enhancement of H$_2$ Separation Performance in Ring-Opened Trцger’s Base Incorporating Modified MOFs.  Industrial & Engineering Chemistry Research.  61 (50) 18537–18544 (2022).
  9. Burrows L., Bollas G. M.  Stability Assessment of Small-Scale Distributed Ammonia Production Systems.  Industrial & Engineering Chemistry Research.  61 (43), 16081–16092 (2022).
  10. Moral G.,  Ortiz-Imedio R., Ortiz A., Gorri D., Ortiz I.  Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives.  Industrial & Engineering Chemistry Research.  61 (18), 6106–6124 (2022).
  11. Bitter J. H., Tashvigh A. A.  Recent Advances in Polybenzimidazole Membranes for Hydrogen Purification.  Industrial & Engineering Chemistry Research.  61 (18), 6125–6134 (2022).
  12. Lee J., Park C.-Y., Kong C.-I., Lee J.-H., Moon S.-Y.  Ultrathin Water-Cast Polymer Membranes for Hydrogen Purification.  ACS Applied Materials & Interfaces.  14 (5), 7292–7300 (2022).
  13. Kendall K.  Green Hydrogen in the UK: Progress and Prospects.  Clean Technologies.  4 (2), 345–355 (2022).
  14. Boyle R.  Tracts Written by the Honourable Robert Boyle Containing New Experiments.  Touching the Relation Betwixt Flame and Air.  Davis Publications. London, UK (1672).
  15. Cavendish H.  Three Papers, Containing Experiments on Factitious Air.  Philosophical Transactions of the Royal Society.  56, 141–184 (1766).
  16. Mizeraczyk J., Urashima K., Jasinski M., Dors M.  Hydrogen production from gaseous fuels by plasmas – A review.  International Journal of Plasma Environmental Science & Technology.  8 (2), 89–97 (2014).
  17. Wang D., Czernik S., Montane D., Mann M., Chornet E.  Biomass to Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming of the Pyrolysis Oil or Its Fractions.  Industrial & Engineering Chemistry Research.  36 (5), 1507–1518 (1997).
  18. Garcia L., French R., Czernik S., Chornet E.  Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition.  Applied Catalysis A: General.  201 (2), 225–239 (2000).
  19. Stiegel J. S., Maxwell R. C.  Gasification technologies: the path to clean, affordable energy in the 21st century.  Fuel Processing Technology.  71 (1–3), 79–97 (2001).
  20. Herrendorfer R., Cochet M., Schumacher J. O.  Simulation of Mass and Heat Transfer in an Evaporatively Cooled PEM Fuel Cell.  Energies.  15 (8), 2734 (2022).
  21. Brickwedde F. G.  Harold Urey and the discovery of deuterium.  Physics Today.  35 (9), 34–39 (1982).
  22. Urey H. C.,  Brickwedde F. G., Murphy G. M.  Relative Abundance of H$^{1}$ and H$^{2}$ in Natural Hydrogen.  Physical Review.  40 (3), 464–465 (1932).
  23. Arnold J. R., Bigeleisen J., Hutchison C. A.  Harold Clayton Urey.  National Academy of Sciences (1995).
  24. IRENA. World Energy Transitions Outlook. 1.5°C Pathway (2021).
  25. IRENA. Global Hydrogen Trade to Meet the 1.5°C climate goal. Part I Trade Outlook for 2050 and Way Forward (2021).
  26. Avtar R., Tripathi S., Aggarwal A. K., Kumar P.  Population-urbanization-energy nexus: a review.  Resources.  8 (3), 136 (2019).
  27. Sarkodie S. A., Owusu P. A., Leirvik T.  Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions.  Environmental Research Letters.  15 (3), 034049 (2020).
  28. Hoang N. T., Kanemoto K.  Mapping the deforestation footprint of nations reveals growing threat to tropical forests.  Nature Ecology & Evolution.  5 (6), 845–853 (2021).
  29. Nicoletti G., Arcuri N., Nicoletti G., Bruno R.  A technical and environmental comparison between hydrogen and some fossil fuels.  Energy Conversion and Management.  89, 205–213 (2015).
  30. Dincer I., Acar C.  Review and evaluation of hydrogen production methods for better sustainability.  International Journal of Hydrogen Energy.  40 (34), 11094–11111 (2015).
  31. Ahmad H., Kamarudin S. K., Minggu L. J., Kassim M.  Hydrogen from photo-catalytic water splitting process: A review.  Renewable and Sustainable Energy Reviews.  43, 599–610 (2015).
  32. Gahleitner G.  Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications.  International Journal of Hydrogen Energy.  38 (5), 2039–2061 (2013).
  33. Thema M., Bauer F., Sterner M.  Power-to-Gas: Electrolysis and methanation status review.  Renewable and Sustainable Energy Reviews.  112, 775–787 (2019).
  34. Parra D., Valverde L., Pino F. J., Patel M. K.  A review on the role, cost and value of hydrogen energy systems for deep decarbonisation.  Renewable and Sustainable Energy Reviews.  101, 279–294 (2019).
  35. York R., Bell S. E.  Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable energy.  Energy Research & Social Science.  51, 40–43 (2019).
  36. Zeng K., Zhang D.  Recent progress in alkaline water electrolysis for hydrogen production and applications.  Progress in Energy and Combustion Science.  36 (3), 307–326 (2010),
  37. Kumar S. S., Himabindu V.  Hydrogen production by PEM water electrolysis – A review.  Materials Science for Energy Technologies.  2 (3), 442–454 (2019).
  38. Dixon R. K., Li J., Wang M. Q.  Progress in hydrogen energy infrastructure development–addressing technical and institutional barriers.  Compendium of Hydrogen Energy.  2, 323–343 (2016).
  39. Basile A., Iulianelli A., Bagnato G., Dalena F.  Hydrogen production for PEM fuel cells.  Production of Hydrogen from Renewable Resources. 339–356 (2015).
  40. Boretti A., Banik B. K.  Advances in Hydrogen Production from Natural Gas Reforming.  Advanced Energy and Sustainability Research. 2 (11), 2100097 (2021).
  41. Duran F. J., Dorado F., Sanchez-Silva L.  Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool.  Energies.  13 (15), 3807–3822 (2020).
  42. Raju A. S., Park C. S., Norbeck J. M.  Synthesis gas production using steam hydrogasification and steam reforming.  Fuel Processing Technology.  90 (2), 330–336 (2009).
  43. Ye G., Xie D., Qiao W., Grace J. R., Lim C. J.  Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus.  International Journal of Hydrogen Energy.  34 (11), 4755–4762 (2009).
  44. Ersoz A., Olgun H., Ozdogan S.  Reforming options for hydrogen production from fossil fuels for PEM fuel cells.  Journal of Power Sources.  154 (1), 67–73 (2006).
  45. Sarvar-Amini A., Sotudeh-Gharebagh R., Bashiri H., Mostoufi A., Haghtalab A.  Sequential Simulation of a Fluidized Bed Membrane Reactor for the Steam Methane Reforming using aspen plus.  Energy Fuels.  21 (6), 3593–3598 (2007).
  46. Fedorov M., Maslikov V., Korablev V., Politaeva N., Chusov A., Molodtsov D.  Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells.  Energies.  15 (21), 8019 (2022).
  47. Pruvost F., Cloete S., Del Pozo C. A., Zaabout A.  Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO$_2$ capture.  Energy Conversion and Management.  274, 116458 (2022).
  48. Ingale G. U., Kwon H.-M., Jeong S., Park D., Kim W., Bang B., Lim Y.-I., Kim S. W., Kang Y.-B., Mun J., Mun S., Lee S.  Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming.  Energy.  15 (22), 8679–8699 (2022).
  49. Huang J., Liu W., Yang Y., Liu B.  High-Performance Ni–Fe Redox Catalysts for Selective CH$_4$ to Syngas Conversion via Chemical Looping.  ACS Catalysis.  8 (3), 1748–1756 (2018).
  50. Meloni E., Martino M., Palma V.  A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming.  Catalysts.  10 (3), 352–391 (2020).
  51. Antzaras A. N., Heracleous E., Lemonidou A. A.  Sorption enhanced–chemical looping steam methane reforming: Optimizing the thermal coupling of regeneration in a fixed bed reactor.  Fuel Processing Technology.  208, 106513 (2020).
  52. Li S., Kang S., Baeyens J., Zhang H. L., Deng Y. M.  Hydrogen production: state of technology.  IOP Conference Series: Earth and Environmental Science.  544, 012011 (2020).
  53. Minutillo M., Perna A., Sorce A.  Combined hydrogen, heat and electricity generation via biogas reforming: Energy and economic assessments.  International Journal of Hydrogen Energy.  44 (43), 23880 (2019).
  54. Wu B., Zhang X., Shang D., Bao D., Zhang S., Zheng T.  Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell.  Bioresource Technology.  214, 722–728 (2016).
  55. Ghatak H. R.  Biorefineries from the perspective of sustainability: Feedstocks, products, and processes.  Renewable and Sustainable Energy Reviews.  15 (8), 4042–4052 (2011).
  56. Demirbas A.  Biofuels sources, biofuel policy, biofuel economy and global biofuel projections.  Energy Conversion and Management.  49 (8), 2106–2116 (2008).
  57. Mohsen R., Mehrpooya M.  Investigation of a new integrated biofuel production process via fast pyrolysis, co-gasification and hydroupgrading.  Energy Conversion and Management.  161, 35–52 (2018).
  58. Naterer G. F., Dincer I., Zamfirescu C.  Hydrogen Production from Nuclear Energy. Springer, London. 473–492 (2013).
  59. Hairch Y., Mghaiouini R., Mortadi A., Saifaoui D., Salah M., Graich A., ElGhaouti C., Elmelouky A., Monkade M., ElBouari A.  Modeling and Simulations of Moving Droplets in Relation to SARS-CoV-19 Generated by Respiratory System.  Aerosol Science and Engineering.  6, 370–380 (2022).
  60. Hairch Y., El Afif A.  Mesoscopic modeling of mass transport in viscoelastic phase-separated polymeric membranes embedding complex deformable interfaces.  Journal of Membrane Science.  596, 117589 (2020).
  61. Rosensteel A. W., Ricote S., Sullivan N. P.  Hydrogen permeation through dense BaCe$_{0.8}$Y$_{0.2}$O$_{3-\delta}$ – Ce$_{0.8}$Y$_{0.2}$O$_{2-\delta}$ composite-ceramic hydrogen separation membranes.  International Journal of Hydrogen Energy.  41 (4), 2598–2606 (2016).