The methods of optimization and regulation of the convective drying process of materials in drying installations

: pp. 546–554
Received: October 21, 2021
Revised: June 14, 2024
Accepted: June 26, 2024

Gayvas B., Markovych B., Dmytruk A., Havran M., Dmytruk V.  The methods of optimization and regulation of the convective drying process of materials in drying installations.  Mathematical Modeling and Computing. Vol. 11, No. 2, pp. 546–554 (2024)

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

In this work, based on fundamental principles well-established in the field of drying technology, optimization for the process of material drying involves controlling the mechanism of moisture transfer by influencing diffusion and thermo-diffusion processes.  Based on the Kirpichov criterion, a quantitative measure of moisture transfer dynamics is ensured, while Nusselt numbers help control temperature gradient and efficient moisture removal.  The article proposes the use of empirical relationships between Nusselt numbers and problem parameters such as moisture content, temperature, and airflow velocity. Optimizing drying parameters based on the proposed equations can contribute to improving drying quality, reducing process time, and lowering energy consumption.  The proposed methods of moisture and temperature gradient control within the material are sustainable and allow us to achieve uniform drying without causing excessive stresses or deformation.

  1. Hayvas B., Dmytruk V., Torskyy A., Dmytruk A.  On methods of mathematical modelling of drying dispersed materials.  Mathematical Modeling and Computing.  4 (2), 139–147 (2017).
  2. Bear J.  Dynamics of Fluids in Porous Media.  American Elsevier Publishing Company, New York (1972).
  3. Luikov A. V.  Heat and Mass Transfer in Capillary Porous Bodies.  Pergamon Press, Oxford (1966).
  4. Rudobashta S. P., Zueva G. A., Muravleva E. A., Dmitriev V. M.  Mass Conductivity of Capillary-Porous Colloidal Materials Subjected to Convective Drying.  Journal of Engineering Physics and Thermophysics.  91, 845–853 (2018).
  5. Borodulya V. A., Teplitskii Yu. S., Epanov Yu. G., Markevich I. I.  External heat transfer in infiltrated granular beds. Experimental study.  Journal of Engineering Physics.  53, 1393–1396 (1987).
  6. Luikov A. V.  Systems of differential equations of heat and mass transfer in capillary-porous bodies.  International Journal of Heat and Mass Transfer.  18 (1), 1–14 (1975).
  7. Patil A. V., Peters E. A. J. F., Kolkman T., Kuipers J. A. M.  Modelling bubble heat transfer in gas–solid fluidized beds using DEM.  Chemical Engineering Science.  105, 121–131 (2014).
  8. Gayvas B. I., Markovych B. M., Dmytruk A. A., Havran M. V., Dmytruk V. A.  Numerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying.  Mathematical Modeling and Computing.  10 (2), 387–399 (2023).
  9. Gayvas B., Markovych B., Dmytruk A., Dmytruk V., Kushka B., Senkovych O.  Study of Contact Drying Granular Materials in Fluidized Bed Dryers.  2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED).  238–241 (2023).
  10. Ahmad A., Liaqat C., Nayik G., Farooq U.  Chemical Composition of Cereal Grains.  In: Cereal Grains: Composition, Nutritional Attributes, and Potential Applications.  Boca Raton, CRC Press (2023).
  11. Voronov V. G., Safarov V. A.  Automation of thermal processes in the production of construction materials.  Kyiv, Budivelnik (1975), (in Ukrainian).
  12. Voronov V. G., Mikhailetsky Z. N.  Automatic control of drying processes.  Kyiv, Technika (1982), (in Ukrainian).