Physics-informed neural networks for the reaction-diffusion Brusselator model

2024;
: pp. 448–454
https://doi.org/10.23939/mmc2024.02.448
Received: December 27, 2023
Revised: May 16, 2024
Accepted: May 17, 2024

Hariri I., Radid A., Rhofir K.  Physics-informed neural networks for the reaction-diffusion Brusselator model.  Mathematical Modeling and Computing. Vol. 11, No. 2, pp. 448–454 (2024)

1
LMFA, FSAC, Hassan II University of Casablanca
2
LMFA, FSAC, Hassan II University of Casablanca
3
LASTI, ENSAK, University of Sultan Moulay Slimane

In this work, we are interesting in solving the 1D and 2D nonlinear stiff reaction-diffusion Brusselator system using a machine learning technique called Physics-Informed Neural Networks (PINNs).  PINN has been successful in a variety of science and engineering disciplines due to its ability of encoding physical laws, given by the PDE, into the neural network loss function in a way where the network must not only conform to the measurements, initial and boundary conditions, but also satisfy the governing equations.  The utilization of PINN for Brusselator system is still in its infancy, with many questions to resolve.  Performance of the framework is tested by solving some one and two dimensional problems with comparable numerical or analytical results.  Validation of the results is investigated in terms of absolute error.  The results showed that our PINN has well performed by producing a good accuracy on the given problems.

  1. Ahmed N., Rafiq M., Rehman M. A., Iqbal M. S., Ali M.  Numerical modeling of three dimensional Brusselator reaction diffusion system.  AIP Advances.  9 (1), 015205 (2019).
  2. Prigogine I.  Time, structure, and fluctuations.  Science.  201 (4358), 777–785 (1978).
  3. Adomian G.  The diffusion-Brusselator equation.  Computers & Mathematics with Applications.  29 (5), 1–3 (1995).
  4. Haq S., Ali I., Nisar K. S.  A computational study of two-dimensional reaction–diffusion Brusselator system with applications in chemical processes.  Alexandria Engineering Journal.  60 (5), 4381–4392 (2021).
  5. Jiwari R., Yuan J.  Computational modeling of two dimensional reaction–diffusion Brusselator system arising in chemical processes.  Journal of Mathematical Chemistry.  52, 1535–1551 (2014).
  6. Dehghan M., Abbaszadeh M.  Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction–diffusion system with and without cross-diffusion.  Computer Methods in Applied Mechanics and Engineering.  300, 770–797 (2016).
  7. Twizell E. H., Gumel A. B., Cao Q.  A second-order scheme for the "Brusselator" reaction–diffusion system.  Journal of Mathematical Chemistry.  26, 297–316 (1999).
  8. Zhang S., Chen M., Chen J., Li Y.-F., Wu Y., Li M., Zhu C.  Combining cross-modal knowledge transfer and semi-supervised learning for speech emotion recognition.  Knowledge-Based Systems.  229, 107340 (2021).
  9. Gao Y., Mosalam K. M.  Deep Transfer Learning for Image-Based Structural Damage Recognition.  Computer-Aided Civil and Infrastructure Engineering.  33 (9), 748–768 (2018).
  10. Yang X., Zhang Y., Lv W., Wang D.  Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier.  Renewable Energy.  163, 386–397 (2021).
  11. Ruder S., Peters M. E., Swayamdipta S., Wolf T.  Transfer Learning in Natural Language Processing.  Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials. 15–18 (2019).
  12. Kontolati K., Loukrezis D., Giovanis D. G., Vandanapu L., Shields M. D.  A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems.  Journal of Computational Physics.  464, 111313 (2022).
  13. Anantharaman R., Abdelrehim A., Jain A., Pal A., Sharp D., Utkarsh, Edelman A., Rackauckas C.  Stably Accelerating Stiff Quantitative Systems Pharmacology Models: Continuous-Time Echo State Networks as Implicit Machine Learning.  IFAC-PapersOnLine.  55 (23), 1–6 (2022).
  14. Raissi M., Perdikaris P., Karniadakis G. E.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.  Journal of Computational Physics.  378, 686–707 (2019).
  15. Cuomo S., Di Cola V. S., Giampaolo F., Rozza G., Raissi M., Piccialli F.  Scientific Machine Learning Through Physics-Informed Neural Networks: Where we are and What's Next.  Journal of Scientific Computing.  92, 88 (2022).