An efficient and lightweight image encryption technique using Lorenz chaotic system

2024;
: pp. 702–709
https://doi.org/10.23939/mmc2024.03.702
Received: March 10, 2023
Revised: September 17, 2024
Accepted: September 19, 2024

Singh P. K., Jha B., Kumar S.  An efficient and lightweight image encryption technique using Lorenz chaotic system.  Mathematical Modeling and Computing. Vol. 11, No. 3, pp. 702–709 (2024)

1
Department of Computer Science, Central University of South Bihar
2
Department of Computer Science, Central University of South Bihar
3
Department of Computer Science, Central University of South Bihar

In the past few years, to store and transmit image data securely, numerous research initiatives on image encoding have been conducted.  The primary objective of the image encryption technique is to safeguard the image by sabotaging the pixel pattern. Researchers suggested a safe, portable, and simple to use image encryption technique in this work.  The encryption of the image is done using a bit-wise XOR operation, where the bit-wise operation is applied on each pixel of the plain image with a pseudo-random number that is created by the Lorenz chaotic system, to prevent unwanted access to confidential image data.  The results of the experiments demonstrate that the suggested technique offers effective image encryption and decryption.  The key stream of the encrypted image is made up of pseudo-random digits generated by the Lorenz Chaotic System.  Several experimental tests have been performed, including histogram, correlation, information entropy, and differential analysis.  The experimental findings reveal that the suggested approach performs image encryption and decryption efficiently.

  1. Wang X., Xue W., An J.  Image encryption algorithm based on Tent-Dynamics coupled map lattices and diffusion of Household.  Chaos, Solitons & Fractals.  141, 110309 (2020).
  2. Wang X., Feng L., Zhao H.  Fast image encryption algorithm based on parallel computing system.  Information Sciences.  486, 340–358 (2019).
  3. Wang S., Wang C., Xu C.  An image encryption algorithm based on a hidden attractor chaos system and the Knuth–Durstenfeld algorithm.  Optics and Lasers in Engineering.  128, 105995 (2020).
  4. Luo Y., Yu J., Lai W., Liu L.  A novel chaotic image encryption algorithm based on improved baker map and logistic map.  Multimedia Tools and Applications.  78, 22023–22043 (2019).
  5. Man Z., Li J., Di X., Sheng Y., Liu Z.  Double image encryption algorithm based on neural network and chaos.  Chaos, Solitons & Fractals.  152, 111318 (2021).
  6. Abdmouleh M. K., Khalfallah A., Bouhlel M. S.  Image encryption with dynamic chaotic Look-Up Table.  2012 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). 331–337 (2012).
  7. Tanenbaum A. S., Wetherall D. J.  Computer Networks.  Prentice Hall, New Jersey (2003).
  8. Li J., Chen L., Cai W., Xiao J., Zhu J., Hu Y., Wen K.  Holographic encryption algorithm based on bit-plane decomposition and hyperchaotic Lorenz system.  Optics & Laser Technology.  152, 108127 (2022).
  9. Zhang Q.  An overview and analysis of hybrid encryption: The combination of symmetric encryption and asymmetric encryption.  2021 2nd international conference on computing and data science (CDS).  616–622 (2021).
  10. Al-Shabi M. A.  A survey on symmetric and asymmetric cryptography algorithms in information security.  International Journal of Scientific and Research Publications (IJSRP).  9 (3), 576–589 (2019).
  11. Baptista M. S.  Cryptography with chaos.  Physics Letters A.  240 (1–2), 50–54 (1998).
  12. Xiong Z., Wu Y., Ye C., Zhang X., Xu F.  Color image chaos encryption algorithm combining CRC and nine palace map.  Multimedia Tools and Applications.  78 (22), 31035–31055 (2019).
  13. Thoms G. R., Muresan R., Al-Dweik A.  Chaotic encryption algorithm with key controlled neural networks for intelligent transportation systems.  IEEE Access.  7, 158697–158709 (2019).
  14. Chen G., Mao Y., Chui C. K.  A symmetric image encryption scheme based on 3D chaotic cat maps.  Chaos, Solitons & Fractals.  21 (3), 749–761 (2004).
  15. Fridrich J.  Symmetric ciphers based on two-dimensional chaotic maps.  International Journal of Bifurcation and Chaos.  08 (06), 1259–1284 (1998).
  16. Wu Y., Noonan J. P., Agaian S.  A novel information entropy based randomness test for image encryption.  2011 IEEE International Conference on Systems, Man, and Cybernetics. 2676–2680 (2011).
  17. Li D., Lu J.-a., Wu X., Chen G.  Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system.  Journal of Mathematical Analysis and Applications.  323 (2), 844–853 (2006).
  18. Xiao S., Yu Z., Deng Y.  Design and analysis of a novel chaos-based image encryption algorithm via switch control mechanism.  Security and Communication Networks.  2020 (1), 7913061 (2020).
  19. Huang C. K., Liao C. W., Hsu S. L., Jeng Y. C.  Implementation of gray image encryption with pixel shuffling and gray-level encryption by single chaotic system.  Telecommunication Systems.  52, 563–571 (2013).
  20. Wu Y., Noonan J. P., Agaian S.  A novel information entropy based randomness test for image encryption.  2011 IEEE International Conference on Systems, Man, and Cybernetics.  2676–2680 (2011).
  21. Wang X.-y., Chen F., Wang T.  A new compound mode of confusion and diffusion for block encryption of image based on chaos.  Communications in Nonlinear Science and Numerical Simulation.  15 (9), 2479–2485 (2010).
  22. Ahmad M., Alam M. S.  A new algorithm of encryption and decryption of images using chaotic mapping.  International Journal on Computer Science and Engineering.  2 (1), 46–50 (2009).