Application of the Bayesian approach to modeling credit risks

2024;
: pp. 1025–1034
https://doi.org/10.23939/mmc2024.04.1025
Received: March 20, 2024
Revised: November 15, 2024
Accepted: November 17, 2024

Senyk A. P., Manziy O. S., Ohloblin P. E., Senyk Y. A., Krasiuk O. P.  Application of the Bayesian approach to modeling credit risks.  Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 1025–1034 (2024)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Forestry University of Ukraine
5
Hetman Petro Sahaidachnyi National Army Academy

A computer model for analyzing, evaluating, and forecasting bank credit risks has been developed.  Utilizing a Bayesian network (BN) and established parameter estimation methods, this model was implemented in the Python programming language.  It predicts the probability that a borrower may fail to meet financial obligations, such as repaying a loan.

  1. Ptak-Chmielewska A., Kopciuszewski P.  New Definition of Default–Recalibration of Credit Risk Models Using Bayesian Approach.  Risks.  10 (1), 16 (2022).
  2. Masmoudi K., Abid L., Masmoudi A.  Credit risk modeling using Bayesian network with a latent variable.  Expert Systems with Applications.  127, 157–166 (2019).
  3. Baesens B., Rösch D., Scheule H.  Bayesian Methods for Credit Risk Modeling. In: Credit Risk Analytics (eds B. Baesens, D. Rösch and H. Scheule), (2017).
  4. Leong C. K.  Credit Risk Scoring with Bayesian Network Models.  Computational Economics.  47 (3), 423–446 (2016).
  5. Lu J., Wu D., Dong J., Dolgui A.  A decision support method for credit risk based on the dynamic Bayesian network.  Industrial Management & Data Systems.  123 (12), 3053–3079 (2023).
  6. Kashmoola M. A., Aziz S. F., Qays H. M., Alsaleem N. Y. A.  Unbalanced credit fraud modeling based on bagging and bayesian optimization.  Eastern-European Journal of Enterprise Technologies.  3 (4 (123)), 47–53 (2023).
  7. Gmehling P., La Mura P.  A Bayesian inference model for the credit rating scale.  Journal of Risk Finance.  17 (4), 390–404 (2016).
  8. Tham A. W., Kakamu K., Liu S.  Bayesian Statistics for Loan Default.  Journal of Risk and Financial Management.  16 (3), 203 (2023).
  9. Wu J., Gao X. Quantification of Debt Default Based on Bayesian Model Averaging.  ICBDT '23: Proceedings of the 2023 6th International Conference on Big Data Technologies.  86–95 (2023).
  10. Senyk A., Manziy O., Futryk Y., Stepanyuk O., Senyk Y.  Information system supporting decision-making processes for forming of securities portfolio.  Journal of Lviv Polytechnic National University "Information systems and networks".  11, 39–55 (2022).
  11. Sverstiuk A., Dubynyak T., Manziy O., Senyk A., Ohloblin P.  Bayesian click model and methods of estimating its parameters.  CEUR Workshop Proceedings.  3628, 389–403 (2023).
  12. Dubyniak T. S., Manziy O., Gancarczyk T., Senyk A., Futryk Y.  Specialized information system for support of the process of recruiting securities.  CEUR Workshop Proceedings.  3468, 117–125 (2023).
  13. Arosio M., Martina M.  The use of Graph Theory to improve disaster risk assessment.  Geophysical Research Abstracts.  20, EGU2018-18451 (2018).
  14. Shivraj V. L., Rajan M. A., Balamuralidhar P.  A graph theory based generic risk assessment framework for internet of things (IoT).  2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). 1–6 (2017).
  15. Bahar A. Y., Shorman S. M., Khder M. A., Quadir A. M., Almosawi S. A.  Survey on Features and Comparisons of Programming Languages (PYTHON, JAVA, AND C#).  2022 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS).  154–163 (2022).