Incorporating long memory into the modeling of gold prices

2024;
: pp. 1128–1134
https://doi.org/10.23939/mmc2024.04.1128
Received: July 01, 2024
Revised: November 25, 2024
Accepted: November 27, 2024

Rashid S. F. A., Ibrahim S. N. I., Laham M. F.  Incorporating long memory into the modeling of gold prices.  Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 1128–1134 (2024)

1
Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia
2
Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia
3
Institute for Mathematical Research, Universiti Putra Malaysia

Inflation causes many people to move to gold as an option for savings because gold may be used as a hedging tool against currency devaluation and purchasing power erosion.  This has contributed to the increased interest in forecasting the prices at the gold market, just like predicting the prices at the stock market, which exhibits uncertain movement, which can be described mathematically with Geometric Brownian Motion (GBM) and Geometric Fractional Brownian Motion (GFBM).  This study aims to model Malaysian gold prices using both GBM and GFBM processes and compare the accuracy of these models.  Absolute moment and aggregated variance techniques are used to estimate the Hurst exponents to model the prices with GFBM.  These models are simulated using the Monte Carlo simulation via the Euler scheme, where the modeled prices will be tested for their accuracy using Mean Average Percentage Error (MAPE).  Based on the findings, the MAPE values for both models exhibited significantly low MAPE values, which implies high accuracy in forecasting the gold prices for a long-term period.  Nevertheless, the GFBM produces much lower MAPE values than the GBM, thus indicating that the former is more accurate than the latter.

  1. Fama E. F.  Efficient capital markets: A review of theory and empirical work.  The Journal of Finance.  25 (2), 383–417 (1970).
  2. Omar A., Jaffar M. M.  Comparative analysis of Geometric Brownian motion model in forecasting FBMHS and FBMKLCI index in Bursa Malaysia.  2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). 157–161 (2011).
  3. Abidin S. N. Z., Jaffar M. M.  A review on Geometric Brownian Motion in forecasting the share prices in Bursa Malaysia.  World Applied Sciences Journal.  17 (Special Issue for Applied Math) , 87–93 (2012).
  4. Reddy K., Clinton V.  Simulating stock prices using geometric Brownian motion: Evidence from Australian companies.  Australasian Accounting, Business and Finance Journal.  10 (3), 23–47 (2016).
  5. Ibrahim S. N. I.  Modeling Rubber Prices as a GBM Process.  Indian Journal of Science and Technology.  9 (28), 1–6 (2016).
  6. Agustini W. F., Affianti I. R., Putri E. R. M.  Stock price prediction using geometric Brownian motion.  Journal of Physics: Conference Series.  974, 012047 (2018).
  7. Hurst H. E.  Long Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers.  116 (1),  (1951).
  8. Brătian V., Acu A.-M. Oprean-Stan C., Dinga E., Ionescu G.-M.  Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion.  Mathematics.  9 (22), 2983 (2021).
  9. Ibrahim S. N. I., Misiran M., Laham M. F.  Geometric fractional Brownian motion model for commodity market simulation.  Alexandria Engineering Journal.  60 (1), 955–962 (2021).
  10. Balasubramaniam S. S., Ibrahim S. N. I.  Simulating Rubber Prices under Geometric Fractional Brownian Motion with Different Hurst Estimators.  Malaysian Journal of Fundamental and Applied Sciences.  19 (1), 93–102 (2023).
  11. Boyle P. P.  Options: A Monte Carlo approach.  Journal of Financial Economics.  4 (3), 323–338 (1977).
  12. Miswan N. H., Ping P. Y., Ahmad M. H.  On parameter estimation for Malaysian gold prices modelling and forecasting.  International Journal of Mathematical Analysis.  7 (21–24), 1059–1068 (2013).
  13. Ismail Z., Yahya A., Shabri A.  Forecasting gold prices using multiple linear regression method.  American Journal of Applied Sciences.  6 (8), 1509–1514 (2009).
  14. Areh S. O., Miswan N. H.  ARIMA Models For Kijang Emas Price Forecasting: Pre- and Post-COVID Analysis.  Malaysian Journal of Mathematical Sciences.  18 (1), 127–140 (2024).
  15. Atsalakis G. S., Valavanis K. P.  Surveying stock market forecasting techniques – Part II: Soft computing methods.  Expert Systems with Applications. 36 (3), 5932–5941 (2009).
  16. Biagini F., Hu Y., Øksendal B., Zhang T.  Stochastic calculus for fractional Brownian motion and applications.  Springer Science & Business Media (2008).
  17. Bank Negara Malaysia.  2022 Kijang Emas Prices [Data File]. https://www.bnm.gov.my/kijang-emas-prices (2023).
  18. Taqqu M. S., Teverovsky V., Willinger W.  Estimators for long-range dependence: an empirical study.  Fractals.  3 (4), 785–798 (1995).
  19. Feng Z.  Stock-price modeling by the geometric fractional Brownian motion: A view towards the Chinese financial market.  Identifier diva2:1257290.  Linnaeus University (2018).
  20. Kijima M., Tam C. M.  Fractional Brownian motions in financial models and their Monte Carlo simulation.  In W. K. Chan (Ed.), Theory and Applications of Monte Carlo Simulations.  InTechOpen (2013).
  21. Lawrence K. D., Klimberg R. K., Lawrence S. M.  Fundamentals of forecasting using Excel.  Industrial Press Inc. (2009).