The valuation of knock-out power calls under Black–Scholes framework

2022;
: pp. 57–64
https://doi.org/10.23939/mmc2022.01.057
Received: July 07, 2021
Accepted: November 22, 2021

Mathematical Modeling and Computing, Vol. 9, No. 1, pp. 57–64 (2022)

1
Department of Mathematics, Faculty of Science, Universiti Putra Malaysia; Institute for Mathematical Research, Universiti Putra Malaysia
2
Department of Mathematics, Faculty of Science, Universiti Putra Malaysia; Institute for Mathematical Research, Universiti Putra Malaysia
3
Institute for Mathematical Research, Universiti Putra Malaysia

Knock-out power calls are options that incorporate barriers to the valuation of power calls.  Introducing barriers to power calls reduces the costs to hold power calls which are known to have higher leverage than the standard vanillas.  In this paper, we model the valuation of knock-out power calls using Crank–Nicolson and Monte Carlo simulation under Black–Scholes environment.  Results show that Crank–Nicolson is more accurate and more efficient than Monte Carlo simulation for pricing knock-out power calls.

  1. Heynen R. C., Kat H. M.  Pricing and hedging power options.  Financial Engineering and the Japanese Markets.  3, 253–261 (1996).
  2. Black F., Scholes M.  The pricing of options and corporate liabilities.  Journal of Political Economy.  81 (3), 637–654 (1973).
  3. Ibrahim S. N. I., O'Hara J. G., Constantinou N.  Power option pricing via fast Fourier transform.  2012 4th Computer Science and Electronic Engineering Conference (CEEC). 1–6 (2012).
  4. Esser A.  General valuation principles for arbitrary payoffs and applications to power options under stochastic volatility.  Financial Markets and Portfolio Management.  17, 351–372 (2003).
  5. Ibrahim S. N. I., O'Hara J. G., Constantinou N.  Risk-neutral valuation of power barrier options.  Applied Mathematics Letters.  26 (6), 595–600 (2013).
  6. Blenman L. P., Clark S. P.  Power exchange options.  Finance Research Letters.  2 (2), 97–106 (2005).
  7. Chen A., Suchanecki M.  Parisian exchange options.  Quantitative Finance.  11 (8), 1207–1220 (2011).
  8. Carr P.  The valuation of sequential exchange opportunities.  The Journal of Finance.  43, 1235–1256 (1988).
  9. Westermark N.  Barrier Option Pricing.  Degree Project in Mathematics, First Level. 1–38 (2009).
  10. Tompkins R., Hubalek F.  On closed form solutions for pricing options with jumping volatility.  Unpublished paper: Technical University, Vienna (2000).
  11. Lee W. T.  Tridiagonal matrices: Thomas algorithm (2011).
  12. Boyle P. P.  Options: A Monte Carlo approach.  Journal of Financial Economics.  4 (3), 323–338 (1977).
  13. Ibrahim S. N., O'Hara J. G., Constantinou N.  Pricing extendible options using the fast Fourier transform.  Mathematical Problems in Engineering.  2014, Article ID 831470 (2014).
  14. Ibrahim S. N., Diaz-Hernandez A., O'Hara J. G., Constantinou N.  Pricing holder-extendable call options with mean-reverting stochastic volatility.  The ANZIAM Journal.  61 (4), 382–397 (2019).