Modeling mass transfer processes in multicomponent capillary-porous bodies under mixed boundary conditions

2024;
: pp. 978–986
https://doi.org/10.23939/mmc2024.04.978
Received: March 09, 2024
Revised: October 25, 2024
Accepted: November 01, 2024

Dmytruk A.  Modeling mass transfer processes in multicomponent capillary-porous bodies under mixed boundary conditions.  Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 978–986 (2024)

Authors:
1
Lviv Polytechnic National University

In this study, we present a physicomathematical model for convective drying of a multicomponent body of the capillary-porous structure, considering moisture transfer dynamics at both macro and micro levels.  Recognizing the impact of the material's local structure on drying processes, particularly in phase transformations, the model integrates the continuum-thermodynamic approach pioneered by Ya. Burak, Ye. Chaplya, and B. Gayvas.  This approach addresses the interrelated mechanical, thermal, and diffusion processes occurring in heterogeneous, nonequilibrium systems, where local thermodynamic equilibrium assumptions allow equilibrium state descriptions by conjugate physical parameters.  The unique dual-level approach captures moisture exchange between an individual grain and the grain bed, enabling realistic simulations of the drying process by directly accounting for phase transformations and material structure influences.  The presented methodology allows simultaneous solving of mass transfer equations for the grain bed and individual grains, supported by numerical experimentation.  The results reveal distinct moisture distribution patterns across the grain bed and within individual grains, with variations influenced by drying agent velocity.  The novelty of this approach lies in its simultaneous treatment of grain-scale and bed-scale moisture transfer, providing a detailed perspective on moisture dynamics.  This model has potential applications in optimizing industrial drying processes for capillary-porous materials, enhancing efficiency and cost-effectiveness.

  1. Burak Ya. I., Chaplya Ye. Ya., Chernukha O. Yu.  Continuum-thermodynamic models of the mechanics of solid solutions.  Kyiv, Naukova Dumka (2006), (in Ukrainian).
  2. Chaplya Ye. Ya.  Continuum-thermodynamic foundations of the theory of solid solutions with local changes in the state of components: Dissertation... of D.Sc.: 01.02.04.  I. Franko Nat. Univ., Lviv (1996), (in Ukrainian).
  3. Chaplya Ye., Hayvas B., Torskyy A.  Construction of the solution of the thermal-convective drying problem for porous solids in drying plants.  Mathematical Modeling and Computing. 2 (1), 1–15 (2015).
  4. Burak Y. Y., Gayvas B. I.  Mathematical model of drying of the porous layer taking into account restrictions on the parameters of the stress-strain state.  Mechanics of the Environment, Methods of Computer Science. 12–26 (2004), (in Ukrainian).
  5. Gayvas B. I., Dmytruk V. A.  Investigation of drying the porous wood of a cylindrical shape.  Mathematical Modeling and Computing.  9 (2), 399–415 (2022).
  6. Gayvas B. I., Markovych B. M., Dmytruk A. A., Havran M. V., Dmytruk V. A.  Numerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying.  Mathematical Modeling and Computing.  10 (2), 387–399 (2023).
  7. Gayvas B., Dmytruk V., Kaminska O., Pastyrska I., Dmytruk A., Nezgoda S.  Simulation of Crack Resistance of Mustard in Pulsed Drying Mode.  2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). 91–95 (2020).
  8. Gayvas B., Markovych B., Dmytruk A., Dmytruk V., Kushka B., Senkovych O.  Study of contact drying granular materials in fluidized bed dryers.  2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). 238–241 (2023).
  9. Gayvas B., Markovych B., Dmytruk A., Havran M., Dmytruk V.  The methods of optimization and regulation of the convective drying process of materials in drying installations.  Mathematical Modeling and Computing.  11 (2), 546–554 (2024).
  10. Gayvas B., Dmytruk V., Semerak M., Rymar T.  Solving Stefan's linear problem for drying cylindrical timber under quasi-averaged formulation.  Mathematical Modeling and Computing. 8 (2), 150–156 (2021).
  11. Hayvas B., Dmytruk V., Torskyy A., Dmytruk A.  On methods of mathematical modelling of drying dispersed materials.  Mathematical Modeling and Computing.  4 (2), 139–147 (2017).
  12. Gera B., Kovalchuk V., Dmytruk V.  Temperature field of metal structures of transport facilities with a thin protective coating.  Mathematical Modeling and Computing.  9 (4), 950–958 (2022).
  13. Hansmann C., Gindl W., Wimmer R., Teischinger A.  Permeability of wood: A review.  Wood Research.  47 (4), 1–16 (2002).
  14. Kostrobij P. P., Ivashchyshyn F. O., Markovych B. M., Tokarchuk M. V.  Microscopic theory of the influence of dipole superparamagnetics (type $\langle \beta-$CD$\langle$FeSO$_4\rangle\rangle$) on current flow in semiconductor layered structures (type GaSe, InSe).  Mathematical Modeling and Computing.  8 (1), 89–105 (2021).
  15. Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V.  Statistical theory of catalytic hydrogen oxidation processes. Basic equations.  Mathematical Modeling and Computing.  8 (2), 267–281 (2021).
  16. Pukach P. Y., Chernukha Y. A.  Mathematical modeling of impurity diffusion process under given statistics of a point mass sources system. I. Mathematical Modeling and Computing.  11 (2), 385–393 (2024).
  17. Sokolovskyy Y., Boretska I., Gayvas B., Kroshnyy I., Nechepurenko A.  Mathematical modeling of convection drying process of wood taking into account the boundary of phase transitions.  Mathematical Modeling and Computing.  8 (4), 830–841 (2021).
  18. Sokolovskyy Y., Boretska I., Kroshnyy I., Gayvas B.  Mathematical models and analysis of the heat-mass-transfer in anisotropic materials taking into account the boundaries of phase transition.  2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). 1–6 (2019).
  19. Sokolovskyy Y., Boretska I., Gayvas B., Kroshnyy I., Shymanskyi V., Gregus M.  Mathematical modeling of heat transfer in anisotropic biophysical materials, taking into account the phase transition boundary.  CEUR Workshop: Proceedings.  2488, 121 (2019).
  20. Tokarchuk M. V.  Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids far from equilibrium.  Mathematical Modeling and Computing.  10 (2), 272–287 (2023).
  21. Tuller M., OrLynn D., Dudley M.  Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores.  Water Resources Research.  35 (7), 1949–1964 (1999).