Performance of geometric Brownian motion (GBM) with various volatility measurement models in forecasting market indices

2025;
: pp. 221–232
https://doi.org/10.23939/mmc2025.01.221
Received: November 19, 2024
Revised: February 17, 2025
Accepted: February 20, 2025

Shah N. A., Ariffin N. A. N.  Performance of geometric Brownian motion (GBM) with various volatility measurement models in forecasting market indices.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 221–232 (2025)  

1
College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM)
2
College of Computing, Informatics and Mathematics, Universiti Teknologi MARA (UiTM), Pahang Branch

Many investors use market indices to manage their portfolios and keep track of the financial markets.  Forecasting financial trends in a complex market is a critical factor for investors.  Given how challenging and unpredictable future predictions can be, forecasting market indices cannot rely solely on regular patterns based on technical analysis.  Therefore, this paper proposes a way to forecast future market indices of Financial Times Stock Exchange (FTSE) Bursa Malaysia Kuala Lumpur Stock Exchange Composite Index (KLCI) and MSCI All Country World Index (ACWI) by using geometric Brownian motion (GBM).  Four different types of formulae are used to determine the suitable volatility measurement that may yield forecast values closer to the actual movements of stock market indices.  The objective of this paper is to analyze the performance of geometric Brownian motion (GBM) and Simple Exponential Smoothing (SES) based on FBM KLCI and MSCI ACWI stock returns.  Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) are chosen to be used in this paper to measure accuracy.  The findings show that using high-low-close volatility yields forecast values closer to the actual movements of stock market indices.  Since SES has the smallest error values, it can be considered the most effective method for forecasting.

  1. Abderrezak L., Mourad M., Djalel D.  Very short-term electricity demand forecasting using adaptive exponential smoothing methods.  15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). 553–557 (2014).
  2. Kaupa P. H., Sassi R. J.  Rough sets: technical computer intelligence applied to financial market.  International Journal of Business Innovation and Research.  13 (1), 130–145 (2017).
  3. Pettenuzzo D., Timmermann A., Valkanov R.  Forecasting stock returns under economic constraints.  Journal of Financial Economics.  114 (3), 517–553 (2014).
  4. Murthy U., Anthony P., Vighnesvaran R.  Factors affecting kuala lumpur composite index (klci) stock market return in Malaysia.  International Journal of Business and Management.  12 (1), 122–132 (2017).
  5. Abdulkadir S. J., Yong S.-P., Alhussian H.  An enhanced ELMAN-NARX hybrid model for FTSE Bursa Malaysia KLCI index forecasting.  2016 3rd International Conference on Computer and Information Sciences (ICCOINS). 304–309 (2016).
  6. Fama E. F.  Random Walks in Stock Market Prices.  Financial Analysts Journal.  21 (5), 55–59 (1965).
  7. Yang Z., Aldous D.  Geometric Brownian Motion Model in Financial Market.  University of California, Berkeley (2015).
  8. Yapar G.  Modified simple exponential smoothing.  Hacettepe Journal of Mathematics and Statistics.  47 (3), 741–754 (2018).
  9. Murat M., Malinowska I., Hoffmann H., Baranowski P.  Statistical modelling of agrometeorological time series by exponential smoothing.  International Agrophysics.  30 (1), 57–65 (2016).
  10. Olaofe Z. O.  Wind energy predictions of small-scale turbine output using exponential smoothing and feed-forward neural network.  International Journal of Energy Engineering.  5 (2), 28–42 (2015).
  11. Siregar B., Butar-Butar I. A., Rahmat R. F., Andayani U., Fahmi F.  Comparison of exponential smoothing methods in forecasting palm oil real production.  Journal of Physics: Conference Series.  801 (1), 012004 (2017).
  12. Yorucu V.  The analysis of forecasting performance by using time series data for two Mediterranean islands.  Review of Social, Economic & Business Studies.  2, 175–196 (2003).
  13. Nadhira A. T., Gadisku C. A., Peranginangin S. M.  Demand Forecasting Comparison of Softex 1400-M using Single Moving Average Method and Single Exponential Smoothing Method.  Proceedings of the International Conference on Industrial Engineering and Operations Management.  452–459 (2021).
  14. Zafar S., Kashif M., Khan M. I., Nida H.  Application of simple exponential smoothing method for temperature forecasting in two major cities of the Punjab, Pakistan.  Agrobiological Records.  4, 64–68 (2020).
  15. Zhao M., Zi X.  Using Earned Value Management with exponential smoothing technique to forecast project cost.  Journal of Physics: Conference Series.  1955 (1), 012101 (2021).
  16. Fatima S., Ali S. S., Zia S. S., Hussain E., Fraz T. R., Khan M. S.  Forecasting carbon dioxide emission of Asian countries using ARIMA and simple exponential smoothing models.  International Journal of Economic and Environmental Geology.  10 (1), 64–69 (2019).
  17. Ermogenous A.  Brownian Motion and its applications in the Stock Market.  EPUMD.  2, 4 (2006).
  18. Bachelier L.  Théorie de la spéculation.  Annales scientifiques de l'École normale supérieure, Serie 3.  17, 21–86 (1900).
  19. Reddy K., Clinton V.  Simulating stock prices using geometric Brownian motion: Evidence from Australian companies.  Australasian Accounting, Business and Finance Journal.  10 (3), 23–47 (2016).
  20. Ibrahim S. N. I., Misiran M., Laham M. F.  Geometric fractional Brownian motion model for commodity market simulation.  Alexandria Engineering Journal.  60 (1), 955–962 (2021).
  21. Wilmott P.  Paul Wilmott on Quantitative Finance.  John Wiley & Sons. (2013).
  22. Salaudeen A. A., Sathasivam S., Ali M. K. M., Abd Wahab N. E.  Forecasting Sugar Price Fluctuation In Malaysia Using Geometric Brownian Motion Modelling.  Journal of Science and Mathematics Letters.  11 (2), 83–92 (2023).
  23. Agbam A. S.  Stock Prices Prediction Using Geometric Brownian Motion: Analysis of the Nigerian Stock Exchange Analysis.  Engineering and Applied Scientific Research.  13 (1), 1–34 (2021).
  24. Mestiri S.  Stock Market Prediction during Coronavirus Outbreak: The Application of Geometric Brownian Motion and Prophet Model.  Available at SSRN: https://ssrn.com/abstract=3916811 (2021).
  25. Abidin S. N. Z., Jaffar M. M.  Forecasting share prices of small size companies in Bursa Malaysia using geometric Brownian motion.  Applied Mathematics & Information Sciences.  8 (1), 107–112 (2014).
  26. Luo G., Feng L.  A environment data behavior analysis algorithm based on dynamic exponential smoothing method.  2014 7th International Conference on Biomedical Engineering and Informatics.  838–842 (2014).
  27. Yin J., Han B., Yu W.  Hyperspectral image target detection based on exponential smoothing method.  2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).  1869–1872 (2015).
  28. Chusyairi A., Ramadar N. P., Bagio.  The use of exponential smoothing method to predict missing service e-report.  2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE). 39–44 (2017).
  29. Abidin S. N. Z., Jaafar M. M.  Surveying the best volatility measurements in stock market forecasting techniques involving small size companies in Bursa Malaysia.  2012 IEEE Symposium on Humanities, Science and Engineering Research.  975–979 (2012).
  30. Estember R. D., MaraпїЅa M. J. R.  Forecasting of stock prices using Brownian motion – Monte Carlo simulation.  International Conference on Industrial Engineering and Operations Management.  8–10 (2016).
  31. Nadyatama D., Aini Q., Utami M. C.  Analysis of commodity inventory with exponential smoothing and silver meal algorithm (Case study).  2016 4th International Conference on Cyber and IT Service Management.  1–6 (2016).
  32. Singhal J.  Forecasting Stock Price Using Brownian Motion Model.  Tuijin Jishu/Journal of Propulsion Technology.  44 (6), (2023).