Numerical solution for fractional differential equations by using Jacobi–Gauss–Radau collocation method

2025;
: pp. 661–668
https://doi.org/10.23939/mmc2025.02.661
Received: December 27, 2024
Accepted: June 21, 2025

Hussain A. K., Alghamdi A. S., Alzaidy J. F., Hussain A. H., Abdul Rahman N. A.  Numerical solution for fractional differential equations by using Jacobi–Gauss–Radau collocation method.  Mathematical Modeling and Computing. Vol. 12, No. 2, pp. 661–668 (2025)

1
Department of Material Engineering, Mustansiriyah University
2
Department of Mathematics, Faculty of Science, AlBaha University
3
Department of Mathematics, Faculty of Science, King Abdulaziz University
4
Department of Automobile Engineering, College of Engineering Al-Musayab, University of Babylon
5
School of Mathematical Sciences, Universiti Sains Malaysia

This study proposes a novel numerical approach for addressing both linear and nonlinear initial fractional order differential equations (FDEs) through the implementation of the Jacobi–Gauss–Radau (JGR) integrated with Caputo fractional derivatives.  The problem is effectively transformed into a simplified system of FDEs, encompassing the unknown coefficients, by employing shifted JGR points for the FDEs and their initial conditions.  For the purpose of investigating the effectiveness and accuracy of the introduced method, some numerical illustrations are provided for various linear and nonlinear FDEs.

  1. Loverro A.  Fractional calculus: History, definitions and applications for the engineer.  Rapport Technique, University of Notre Dame: Department of Aerospace and Mechanical Engineering.  1, 1–28 (2004).
  2. Hilfer R.  Applications of Fractional Calculus in Physics.  World Scientific Pub. Co. Pte. Ltd. (2000).
  3. Miller K. S., Ross B.  An Introduction to the Fractional Calculus and Fractional Differential Equations.  John Wiley & Sons Inc. (1993).
  4. Ma X., Huang C.  Spectral collocation method for linear fractional integro-differential equations.  Applied Mathematical Modelling.  38 (4), 1434–1448 (2014).
  5. Garrappa R.  Numerical solution of fractional differential equations: A survey and a software tutorial.  Mathematics.  6 (2), 16 (2018).
  6. Yuste S. B.  Weighted average finite difference methods for fractional diffusion equations.  Journal of Computational Physics.  216 (1), 264–274 (2006).
  7. Yumin L., Xu C.  Finite difference/spectral approximations for the time-fractional diffusion equation.  Journal of Computational Physics.  225 (2), 1533–1552 (2007).
  8. Zhao X., Hu X., Cai W., Karniadakis G. E.  Adaptive finite element method for fractional differential equations using hierarchical matrices.  Computer Methods in Applied Mechanics and Engineering.  325, 56–76 (2017).
  9. Zeng F., Turner I., Burrage K.  A stable fast time-stepping method for fractional integral and derivative operators.  Journal of Scientific Computing.  77, 283–307 (2018).
  10. Duan J.-S., Li M., Wang Y., An Y.-L.  Approximate solution of fractional differential equation by quadratic splines.  Fractal and Fractional.  6 (7), 369 (2022).
  11. Doha E. H., Bhrawy A. H., Ezz-Eldien S. S.  A new Jacobi operational matrix: An application for solving fractional differential equations.  Applied Mathematical Modelling.  36 (10), 4931–4943 (2012).
  12. Ghoreishi F., Yazdani S.  An extension of the spectral tau method for numerical solution of multi-order fractional differential equations with convergence analysis.  Computers & Mathematics with Applications.  61 (1), 30–43 (2011).
  13. Vanani S. K., Aminataei A.  Tau approximate solution of fractional partial differential equations.  Computers & Mathematics with Applications.  62 (3), 1075–1083 (2011).
  14. Pedas A., Tamme E.  On the convergence of spline collocation methods for solving fractional differential equations.  Journal of Computational and Applied Mathematics.  235 (12), 3502–3514 (2011).
  15. Bhrawy A. H., Doha E. H., Baleanu D., Ezz-Eldien S. S.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations.  Journal of Computational Physics.  293, 142–156 (2015).
  16. Khosravian-Arab H., Dehghan M., Eslahchi M. R.  Fractional spectral and pseudo-spectral methods in unbounded domains: Theory and applications.  Journal of Computational Physics.  338, 527–566 (2017).
  17. Saadatmandi A., Dehghan M.  A new operational matrix for solving fractional-order differential equations.  Computers & Mathematics with Applications.  59 (3), 1326–1336 (2010).
  18. Doha E. H., Bhrawy A. H., Baleanu D., Ezz-Eldien S. S.  On shifted Jacobi spectral approximations for solving fractional differential equations.  Applied Mathematics and Computation.  219 (15), 8042–8056 (2013).
  19. Zayernouri M., Karniadakis G. E.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs.  Journal of Computational Physics.  293, 312–338 (2015).
  20. Abdelkawy M. A.  A collocation method based on Jacobi and fractional order Jacobi basis functions for multi-dimensional distributed-order diffusion equations.  International Journal of Nonlinear Sciences and Numerical Simulation.  19 (7–8), 781–792 (2018).
  21. Abdelkawy M. A.  An improved collocation technique for distributed-order fractional partial differential equations.  Romanian Reports in Physics.  72, 104 (2020).
  22. Yang Y., Tao J., Zhang S., Sivtsev P. V.  A Jacobi collocation method for the fractional Ginzburg-Landau differential equation.  Advances in Applied Mathematics and Mechanics.  12 (1), 57–86 (2020).
  23. Zaky M. A., Hendy A. S., Suragan D.  Logarithmic Jacobi collocation method for Caputo–Hadamard fractional differential equations.  Applied Numerical Mathematics.  181, 326–346 (2022).
  24. Rehman M. U., Idrees A., Saeed U.  A quadrature method for numerical solutions of fractional differential equations.  Applied Mathematics and Computation.  307, 38–49 (2017).
  25. Youssri Y. H.  A new operational matrix of Caputo fractional derivatives of Fermat polynomials: An application for solving the Bagley–Torvik equation.  Advances in Difference Equations.  2017, 73  (2017).
  26. Podlubny I.  Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.  Academic Press, San Diego (1998).
  27. Bhrawy A. H., Alzaidy J. F., Abdelkawy M. A., Biswas A.  Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations.  Nonlinear Dynamics.  84, 1553–1567 (2016).
  28. Bhrawy A. H., Tharwat M. M., Alghamdi M. A.  A new operational matrix of fractional integration for shifted Jacobi polynomials.  Bulletin of the Malaysian Mathematical Sciences Society.  37 (4), 983–995 (2014).
  29. Bhrawy A. H.  A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations.  Numerical Algorithms.  73, 91–113 (2016).
  30. Bhrawy A. H., Doha E. H., Ezz-Eldien S. S., Van Gorder R. A.  A new Jacobi spectral collocation method for solving $1+1$ fractional Schrödinger equations and fractional coupled Schrödinger systems.  The European Physical Journal Plus.  129, 260 (2014).
  31. Babolian E., Vahidi A. R., Shoja A.  An efficient method for nonlinear fractional differential equations: Combination of the Adomian decomposition method and spectral method.  Indian Journal of Pure and Applied Mathematics.  45, 1017–1028 (2014).