Predicting Student Performance in Moroccan Secondary Education: A Machine Learning Framework for Academic Pathway Guidance

2025;
: pp. 1135–1144
Received: March 28, 2025
Revised: October 19, 2025
Accepted: October 25, 2025

Sammah S., Ait Daoud M., Achtaich K., Tragha A.  Predicting Student Performance in Moroccan Secondary Education: A Machine Learning Framework for Academic Pathway Guidance.  Mathematical Modeling and Computing. Vol. 12, No. 4, pp. 1135–1144 (2025) 

1
LTIM, Department of Computer Science, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca
2
LTIM, Department of Computer Science, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca; ORDIPU, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca
3
LTIM, Department of Computer Science, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca
4
LTIM, Department of Computer Science, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca

This study addresses the lack of region-specific tools for academic counseling in Morocco by proposing a machine learning framework to predict student performance across secondary education pathways.  Using academic records of students from the Greater Casablanca region, we evaluate four models – Random Forest, Support Vector Machine (SVM), Decision Tree, and Linear Regression – following a methodology that integrates data preprocessing, feature selection, and synthetic data enrichment to address class imbalance.  The Random Forest algorithm achieved an accuracy rate of 75.20%, significantly outperforming the other models.  By linking predictive outcomes to actionable academic guidance, the proposed framework enables educators to recommend pathways tailored to individual student strengths, thus addressing a critical gap in Morocco's education system.

  1. Apple M. W.  Can education change society?  Routledge, New York (2012).
  2. Van Der Aalst W.  Data Science in Action.  Process Mining. Springer, Berlin, Heidelberg (2016).
  3. Osmanbegovic E., Suljic M.  Data mining approach for predicting student performance.  Economic Review: Journal of Economics and Business.  10 (1), 3–12 (2012).
  4. Burgos C., Campanario M. L., de la Peña D., Lara J. A., Lizcano D., Martínez M. A.  Data mining for modeling students' performance: A tutoring action plan to prevent academic dropout.  Computers & Electrical Engineering.  66, 541–556 (2018).
  5. Lakkaraju H., Aguiar E., Shan C., Miller D., Bhanpuri N., Ghani R., Addison K. L.  A Machine Learning Framework to Identify Students at Risk of Adverse Academic Outcomes.  KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.  1909–1918 (2015).
  6. Ahmed A. B. E. D., Elaraby I. S.  Data mining: A prediction for student's performance using classification method.  World Journal of Computer Application and Technology.  2 (2), 43–47 (2014).
  7. Marbouti F., Diefes-Dux H. A., Madhavan K.  Models for early prediction of at-risk students in a course using standards-based grading.  Computers & Education.  103, 1–15 (2016).
  8. Al-Shehri H., Al-Qarni A.,Al-Saati L., Batoaq A., Badukhen H., Alrashed S.  Student performance prediction using Support Vector Machine and K-Nearest Neighbor.  2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE).  1–4 (2017).
  9. Chui K. T., Fung D. C. L., Lytras M. D., Lam T. M.  Predicting at-risk university students in a virtual learning environment via a machine learning algorithm.  Computers in Human Behavior.  107, 105584 (2020).
  10. Nieto Y., García-Díaz  V., Montenegro C., Crespo R. G.  Supporting academic decision making at higher educational institutions using machine learning-based algorithms.  Soft Computing.  23, 4145–4153 (2019).
  11. Aggarwal D., Mittal S., Bali V.  Significance of non-academic parameters for predicting student performance using en-semble learning techniques.  International Journal of System Dynamics Applications (IJSDA).  10 (3), 38–49 (2021).
  12. Ghorbani R., Ghousi R.  Comparing Different Resampling Methods in Predicting Students' Performance Using Machine Learning Techniques.  IEEE Access.  8, 67899–67911 (2020).
  13. Hussain K., Talpur N., Aftab M. U., Zakria. A Novel Metaheuristic Approach to Optimization of Neuro-Fuzzy System for Students' Performance Prediction.  Journal of Soft Computing and Data Mining.  1 (1), 1–9 (2020).
  14. Wakelam E., Jefferies A., Davey N., Sun Y.  The potential for student performance prediction in small cohorts with minimal availa-ble attributes.  British Journal of Educational Technology.  51 (2), 347–370 (2020).
  15. Plagge M.  Using artificial neural networks to predict first-year traditional students second year re-tention rates.  ACMSE '13: Proceedings of the 51st annual ACM Southeast Conference.  17, 1–5 (2013).
  16. Pal S.  Mining educational data to reduce dropout rates of engineering students.  International Journal of Information Engineering and Electronic Business.  4 (2), 1–7 (2012).
  17. Hu Y.-H., Lo C.-L., Shih S.-P.  Developing early warning systems to predict students' online learning performance.  Computers in Human Behavior.  36, 469–478 (2014).
  18. Yukselturk E., Ozekes S., Türel Y. K.  Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program.  European Journal of Open, Distance and e-Learning.  17 (1), 118–133 (2014).
  19. Tan M., Shao P.  Prediction of student dropout in e-Learning program through the use of machine learn-ing method.  International Journal of Emerging Technologies in Learning.  10 (1), 11–17 (2015).
  20. Bolisetti S., Sankepally P. R., Kunta S. R. R., Lakkireddy R. R., Vemula M. K.  Student Performance Analyser Using Supervised Learning Algorithms.  EasyChair Preprint №5747 (2021).
  21. Ihya R., Aitdaoud M., Namir A., Guerss F. Z., Haddani H.  Using Machine Learning Algorithms to Predict the E-orientation Systems Acceptancy.  Innovations in Smart Cities Applications Edition 3. 117–130 (2020).
  22. Ait Daoud M., Namir A., Talbi M.  FSLSM-Based Analysis of Student Performance Information in a Blended Learning Course Using Moodle LMS.  Open Information Science.  8 (1), 20220163 (2024).
  23. Ramya P., Balakrishnan S., Kannan M.  Recommendation system to improve students performance using machine learning.  IOP Conference Series: Materials Science and Engineering.  872, 012038 (2020).
  24. Villar A., de Andrade C. R. V.  Supervised machine learning algorithms for predicting student dropout and academic success: a comparative study.  Discover Artificial Intelligence.  4 (1), 2 (2024).
  25. Shawareb N., Ewais A., Dalipi F.  Utilizing Data Mining Techniques to Predict Students Performance using Data Log from MOODLE.  2564–2588 (2024).
  26. Krishna C. V., Ashokkumar S.  Prediction of academic performance of students using novel classification technique of decision tree comparing with random forest.  AIP Conference Proceedings.  2871 (1), 020008 (2024).
  27. Yağcı M.  Educational data mining: prediction of students' academic performance using machine learning algorithms.  Smart Learning Environments.  9 (1), 11 (2022).
  28. García S., Ramírez-Gallego S., Luengo J., Benítez J. M., Herrera F.  Big data preprocessing: methods and prospects.  Big Data Analytics.  1 (1), 1–22 (2016).