On the calculation of thermoelastic processes in a cylindrical shell with local heat sources

2017;
: pp. 162-170
https://doi.org/10.23939/mmc2017.02.162
Received: November 05, 2017

Math. Model. Comput. Vol.4, No.2, pp.162-170 (2017)

1
Ivan Franko National University of Lviv
2
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine

A quasistatic problem of thermoelasticity for a yielding cylindrical finite-length shell under the action of axially symmetric heat sources in a wide range of heating modes is solved. The numerical calculation of the temperature fields, the ring forces and the bending moments for the values of the time at which they reach the maximal levels is carried out. The influence of the shear degree is studied.

  1. Besedina L., Burak Ya., Podstrigach Ya.  On Optimal Heating of Inhomogeneous Shells of Rotation.  Izv. Akad. Nauk of SSSR, MTT.  6, 110--116 (1973), (in Russian).
  2. Grigolyuk E., Burak Ya., Podstrigach Ya.  On an extremal problem of thermoelasticity for an infinite cylindrical shell.  Dokl. AN of SSSR.  174 (3), 534--537 (1967), (in Russian).
  3. Kushnir R., Popovych V.  Thermal elasticity of thermosensitive bodies.  Lviv, Spolom (2009), (in Ukrainian).
  4. Podstrigach Ya., Shvets R.  Thermoelasticity of thin shells.  Kiev, Naukova Dumka (1978), (in Russian).
  5. Kopiey B., Maksymuk O., et al.  Pumps rod and pipes made of polymeric composites.  Lviv, Polygraphy (2003), (in Ukrainian).
  6. Maksimuk A., Shcherbina N., Ganulich N.  Designing, calculation, and optimization of polymeric honeycomb pipes.  Mechanics of Composite Materials.  44 (6), 601--606 (2008).
  7. Malmeister A., Tamuzh V., Teters G.  Resistance of stiff polymeric materials.  Riga, Zinatne (1972), (in Russian).
  8. Teters G.  Multicriteria optimization of a compozite cylindrical shell subjected to thermal and dynamic actions.  Mechanics of Composite Materials. 40 (6), 489--494 (2004).
  9. Pelekh B.  The theory of shells with finite shear stiffness.  Kiev, Naukova Dumka (1973), (in Russian).
  10. Maksymuk O., Ganulich N.  Thermoelasticity of a cylindrical shell with low shear rigidity in a local temperature field.  Mat. Methods and Physical Mech. Fields. 58 (3), 26--34 (2015), (in Ukrainian).
  11. Ganulich N.  Cylindrical shell of finite length with low shear rigidity under the action of local heat sources.  Math. Methods and Physical Mech. Fields. 59 (4), 82--90  (2016), (in Ukrainian).
  12. Ganulich V., Maksymuk O., Ganulich N.  Quasistatic thermoelasticity problem for a cylindrical shell with heat sources and heat transfer.  Mat. Methods and Physical Mech. Fields. 58 (1), 154--161 (2015), (in Ukrainian).
  13. Bolotin V.  Equations of non-stationary temperature fields in thin shells in the presence of heat sources.  Appl. Math. & Mech. 24 (2), 361--336 (1960), (in Russian).
  14. Belyaev N., Ryadno A.  Mathematical methods of heat conduction. Kiev, Vishcha school (1993), (in Russian).
  15. Pelekh B., Sukhorolsky M. Contact problems of the theory of elastic anisotropic shells.  Kiev, Naukova Dumka' (1980), (in Russian).