Construction of generalized conclusions by means of linear and nonlinear aggregation methods

2017;
: pp. 177-186
https://doi.org/10.23939/mmc2017.02.177
Received: November 14, 2017

Math. Model. Comput. Vol.4, No.2, pp.177-186 (2017)

Authors:
1
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine

The main approaches for the formation of generalized conclusions about operation quality of complex hierarchical network systems are analyzed.  Advantages and drawbacks of the ``weakest'' element method and a weighted linear aggregation method are determined.  Nonlinear aggregation method is proposed for evaluating the quality of the system, which consists of elements of the same priority.  Hybrid approaches to form generalized conclusions are developed based on the main aggregation methods.  It is shown that they allow us to obtain more reliable generalized conclusions.

  1. Polishchuk D., Polishchuk O., Yadzhak M.  Complex deterministic evaluation of hierarchically-network systems: I. Methods description.  System Research and Information Technologies. 1, 21--31 (2015).
  2. Neng Chiu H.  The integrated logistics management system: a framework and case study.  International Journal of Physical Distribution & Logistics Management. 25 (6), 4--22 (1995).
  3. Berners-Lee T. et all.  World-Wide Web: the information universe. Internet Research. 20 (4), 461--471 (2010).
  4. Marsan G. A., Bellomo N., Egidi M.  Towards a mathematical theory of complex socio-economical systems by functional subsystems representation.  Kinetic and Related Models. 1 (2), 249--278 (2008).
  5. Rajan R. G., Zingales L.  Financial systems, industrial structure, and growth.  Oxford review of economic Policy. 17 (4), 467--482 (2001).
  6. Scott A. J., Storper M.  Regions, globalization, development.  Regional studies. 41 (sup1), S191--S205, (2001).
  7. Polishchuk O., Polishchuk D., Tyutyunnyk M., Yadzhak M.  Issues of regional development and evaluation problems.  AASCIT Communications. 2 (4), 115--120, (2015).
  8. Buldyrev S. et all.  Catastrophic cascade of failures in interdependent networks.  Nature. 464, 1025--1028 (2010).
  9. Weart S. R.  Nuclear fear: A history of images.  Harvard University Press (2009).
  10. Blanchard D. S., Fabrycky W. J.  Systems engineering and analysis. Vol. 4.  Englewood Cliffs, New Jersey, Prentice Hall (1990).
  11. Isermann R.  Fault-diagnosis applications: model-based condition monitoring: actuators, drives, machinery, plants, sensors, and fault-tolerant systems.  Springer Science & Business Media, New York (2011).
  12. Buslenko N. P.  Modelling of complex systems. Nauka, Moscow (1978), (in Russian).
  13. Allison J. T.  Complex system optimization: A review of analytical target cascading, collaborative optimization, and other formulations.  Doctoral dissertation, The University of Michigan, 2004.
  14. Boccaletti S. et all.  Complex networks: structure and dynamics.  Physics Reports. 424 (4--5), 175--308 (2006).
  15. Boccaletti S. et all.  The structure and dynamics of multilayer networks.  Physics Reports. 544 (1), 1--122 (2014).
  16. Polishchuk O., Polishchuk D.  Monitoring of flow in transport networks with partially ordered motion.  ХХІІІ Conf. Carpenko physics and mechanics institute, NASU, 326--329 (2013).
  17. Hinrichsen D., Pritchard A. J.  Mathematical Systems Theory I.  Springer, New York (2005).
  18. Owen C. L.  Evaluation of complex systems.  Designe Studies. 28 (1), 73--101 (2007).
  19. Norros L., Savioja P.  Usability evaluation of complex systems. A literature review.  STUK, Helsinki (2004).
  20. Bar-Yam Y.  About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering.  Engineering Self-Organising Systems, pp. 16--31.  Springer, London (2005).
  21. Arnold V. A.  Catastrophe theory.  Springer-Verlag, Berlin (1992).
  22. Dombi J.  Basic concepts for a theory of evaluation: the aggregative operator.  European Journal of Operational Research. 10 (3), 282--293 (1982).
  23. Wittmuss A.  Scalarizing multiobjective optimization problems.  Mathematical Researches. 27, 255--258 (1985).
  24. Polishchuk O.  Optimization of function quality of complex dynamical systems.  Journal of Automation and Information Sciences. 4, 39--44 (2004).
  25. Polishchuk D., Polishchuk O.  About evaluation of complex dynamical systems.  Journal of Complex Systems. 2013, Article ID 204304, 6 p. (2013).
  26. Polishchuk O.  Choice of optimal regimes for functioning of complex dynamical systems.  Mathematical Methods and Physicomechanical Fields. 48 (3), 62--67 (2005).
  27. Polishchuk O.  About the choice of the optimal dynamical system from the class of equivalent systems.  Information Extraction and Processing. 20 (96), 23--28 (2004).
  28. Polishchuk D., Polishchuk O., Yadzhak M.  Comparison of methods of complex system evaluation.  Information Extraction and Processing. 32 (108), 110--118 (2010).
  29. Lichtberger B. W.  Kostensenkung durch Qualitatsvorrat in der Fahrweginstandhaltung.  Der Eisenbahningenieur. 50 (1), 39--42 (1999).
  30. Bronshtein I. N., Semendyaev K. A.  Handbook of mathematics for engineers and students of technical colleges.  Nauka, Moscow (1986), (in Russian).
  31. Strimling D.  Multi-Criteria Analysis in the Renewable Energy Industry (Green Energy and Technology).  Interfaces. 43 (2), 201--202 (2013).
  32. Polishchuk O., Tyutyunnyk M., Yadzhak M.  Quality evaluation of complex systems function on the base of parallel calculations.  Information Extraction and Processing. 26 (102), 121--126 (2007).