Analytical methods of optimization of operational parameters of the main gas pipelines (gas mains)

2018;
: pp. 1-9
https://doi.org/10.23939/mmc2018.01.001
Received: January 15, 2018

Math. Model. Comput. Vol.5, No.1, pp.1-9 (2018)

1
Institute of Gas Transmission PJSC Ukrtransgas
2
Centre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine
3
Centre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine

An analytical model for the operation of the main gas pipeline is proposed.  The results of the investigation of the domain of optimality by analytical methods are presented.  The developed software is tested on real data.  Comparative results of modeling and optimization by numerical and analytical methods are presented.

  1. Bellman R. E., Dreyfus S. E. Applied Dynamic Programming. Princeton, New Jersey, Princeton university press (1962).
  2. Garliauskas A. N. Dyskretnyy princip maksimuma pri upravlenii magistralnymi gasoprovodami. Gasovaia promyshlennost. 4, 14–17 (1971), (in Russian).
  3. Sun C. K., Uraikul V., Chan ˙C. W., Tontiwachwuthikul P. An integrated expert system/operations research approach for optimization of natural gas pipeline operations. Engineering Applications of Artificial Intelligence. 13 (4), 465–475 (2000).
  4. Todini E., Pilati S. A gradient algorithm for the analysis of pipe networks. Computer Applications in Water Supply: Vol. 1 - System analysis and simulation. London, John Wiley & Sons. 1–20 (1988).
  5. Rios-Mercado R. Z., Wu S., Scott L. R., Boyd E. A. A Reduction technique for natural gas transmission network optimization problems. Annals of Operations Research. 117, 217–234 (2002).
  6. Kulik V. S. Gas transport through branched gas transmission system optimization algorithm. Truboprovodnyi transport: teoriia i praktika. 2, 22–25 (2014), (in Russian).
  7. Kulik V. S., Kazak A. S., Hrabov I. Yu. Optimization of operating modes of distance gas transportation systems with changing productivity. Truboprovodnyy transport: teoriia i praktika. 5. 38–42 (2015), (in Russian).
  8. Karasevych A. M., Suharev M. G., Belinskiy A. V., Tverskoy I. V., Samoilov R. V. Energoeffektivnyie rezhimy gasotransportnyh system i principy ih obespecheniia. Gazovaia promyshlennost. 1, 30–34 (2012), (in Russian).
  9. Prytula N., Frolov V., Prytula M. Optimal scheduling of operating modes of the gas transmission system. Mathematical modeling and computing. 4 (1). 78–86 (2017).
  10. Prytula N., Prytula M., Daciuk A., Gladun S., Hymko O. Optymizaciia rezhymiv roboty gazotransportnoii systemy. Visnyk Nacionalnogo universytety “Lvivska politehnika”. Komputerni nauky ta informaciyni tehnologii. 694, 395–401 (2011), (in Ukrainian).
  11. Prytula N., Prytula M., Yamnych V., Daciuk A., Gladun S., Hymko O. Pro optymalni rezhymy roboty bagatonytkovyh magistralnyh gazoprovodiv. Visnyk Nacionalnogo universytetu “Lvivska politehnika”. Komputerni nauky ta informaciini tehnologii. 719, 256–261 (2011), (in Ukrainian).
  12. Sardanashvili S. A. Rascietnyie metody i algoritmy (truboprovodnyj transport gaza). Moscow, FGUP Izdatielstvo "Neft i gaz" RGU nefti i gaza (2005), (in Russian).
  13. Prytula N. M., Pyanylo Ya. D., Prytula M. G. Pidzemne zberigannia gazu (matematychni modeli ta metody). Lviv, RASTR-7 (2015), (in Ukrainian).