Consensus control of multi-agent systems with input delays: a descriptor model approach

: pp. 333–343
Received: October 15, 2019
Revised: November 13, 2019
Accepted: November 15, 2019
National Technical University “Kharkiv Polytechnic Institute”
National Technical University “Kharkiv Polytechnic Institute”

This paper addresses the consensus control design for multi-agent systems with input time delay, which is unknown but bounded.  Descriptor transformation is used to obtain a model without delay for closed-loop individual agent.  The sufficient conditions for global consensus under directed communication topology are identified using Lyapunov--Krasovskii functional.  To analyze the stability of the networked multi-agent system based on the relationship between the agents the Lyapunov function method using corresponding comparison system is used.  The effectiveness of the proposed control design method is demonstrated through a numerical simulation example.

  1. Ren W., Beard R., Atkins E.  A Survey of Consensus Problems in Multi-Agent Coordination.  Proceedings of the 2005, American Control Conference. 3, 1859--1864 (2005).
  2. Olfati-Saber R., Fax A., Murray R. M.  Consensus and Cooperation in Networked Multi-Agent Systems.  Proceedings of the IEEE Int. Conference on Decision and Control. 95 (1), 215--233 (2007).
  3. Saber R. O., Murray R. M.  Consensus Protocols for Networks of Dynamic Agents.  Proceedings of the 2003 American Control Conference. 951--956 (2003).
  4. Mesbahi M., Egerstedt M.  Graph theoretic methods in multiagent networks.  New Jersey, Princeton University Press (2010).
  5. Olfati-Saber R., Murray R. M.  Consensus Problems in Networks of Agents With Switching Topology and Time-Delays.  IEEE Trans. Autom. Contr. 49 (9), 1520--1533 (2004).
  6. Bliman P. A., Ferrari-Trecate G.  Average consensus problems in networks of agents with delayed communications.  Automatica. 44 (8), 1985--1995 (2008).
  7. Munz U., Papachristodoulou A., Allgower F.  Delay robustness in non-identical multi-agent systems.  IEEE Transactions on Automatic Control. 57 (6), 1597--1603 (2012).
  8. Cao M., Morse A. S., Anderson B. D. O.  Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events.  SIAM Journal on Control and Optimization. 47 (2), 601--623 (2008).
  9. Zuo Z., Wang C., Ding Z.  A reduction method to consensus control of uncertain multi-agent systems with input delay.  2015 34th Chinese Control Conference (CCC). 7315--7321 (2015).
  10. Poznyak A., Polyakov A., Azhmyakov V.  Attractive ellipsoids in robust control.  Springer International Publishing (2014).
  11. Martynyuk A. A.  Stability by Liapunov's Matrix Function Method with Applications.  Marcel Dekker, Inc. (1998).
  12. Lakshmikantham V. V., Matrosov V. M., Sivasundaram S.  Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems.  Netherlands, Springer (1991).
  13. Olfati--Saber R. Flocking for multi-agent dynamic systems: algorithms and theory.  IEEE Transactions on Automatic Control. 51 (3), 401--420 (2006).
  14. Ren W., Beard R. W.  Distributed Consensus in Multi-vehicle Cooperative Control.  London, Springer (2008).
  15. Bauso D., Giarre L., Pesenti R.  Non-linear protocols for optimal distributed consensus in networks of dynamic agents.  Systems & Control Letters. 55 (11), 918--928 (2006).
  16. Belov A. A., Kurdyukov A. P.  Descriptor Systems and Control Problems.  Moscow, Fizmatlit. (2015), (In Russian).
  17. Fridman E., Shaked U.  A descriptor system approach to $\mathrm{H}_\infty$ control of linear time-delay systems.  IEEE Transactions on Automatic Control.  47 (2), 253--270 (2002).
  18. Schneider R.  Convex bodies: the Brunn--Minkowski theory.  Cambridge University Press (1993).
  19. Polyak B. T., Hlebnikov M. V., Scherbakov P. S.  Control of linear systems under external disturbances (linear matrix inequality technique.  Moscow, LENAND (2014), (in Russian).
  20. Petersen I. R., McFarlane D. C., Rotea M. A.  Optimal guaranteed cost control of discrete-time uncertain linear systems.  Int. J. Robust Nonlinear Control. 8, 649--657 (1998).
  21. Grant M., Boyd S. CVX: MATLAB software for disciplined convex programming, version 2.1.
  22. Dorofieiev Y. I., Lyubchyk L. M., Nikulchenko A. A.  Consensus decentralized control of multi-agent networked systems using vector Lyapunov functions.  Proceedings of the 9th IEEE Intern. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1, 60--65 (2017).
  23. Li Z., Duan Z.  Cooperative control of multi-agent systems: a consensus region approach.  Boca Raton, CRC Press (2017).
Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 333–343 (2019)