Hemivariational inverse problem for contact problem with locking materials

2021;
: pp. 665–677
https://doi.org/10.23939/mmc2021.04.665
Received: May 23, 2021
Accepted: June 07, 2021

Mathematical Modeling and Computing, Vol. 8, No. 4, pp. 665–677 (2021)

1
Sultan Moulay Slimane University, Lab MATIC, FP of Khouribga, Morocco
2
Ibn Zohr University, FP of Ouarzazate, Morocco
3
Sultan Moulay Slimane University, Multidisciplinary Research and Innovation Laboratory, FP of Khouribga, Morocco
4
Sultan Moulay Slimane University, Lab MATIC, FP of Khouribga, Morocco

The aim of this work is to study an inverse problem for a frictional contact model for locking material.  The deformable body consists of electro-elastic-locking materials.  Here, the locking character makes the solution belong to a convex set, the contact is presented in the form of multivalued normal compliance, and frictions are described with a sub-gradient of a locally Lipschitz mapping.  We develop the variational formulation of the model by combining two hemivariational inequalities in a linked system.  The existence and uniqueness of the solution are demonstrated utilizing recent conclusions from hemivariational inequalities theory and a fixed point argument.  Finally, we provided a continuous dependence result and then we established the existence of a solution to an inverse problem for piezoelectric-locking material frictional contact problem.

  1. Denkowski Z., Migórski S., Papageorgiou N. S.  An introduction to nonlinear analysis: theory.  Kluwer Academic/Plenum Publishers, New York (2003).
  2. Barabasz B., Migórski S., Schaefer R.  Multi deme, twin adaptive strategy $hp$-HGS.  Inverse Problems in Science and Engineering. 19 (1), 3–16 (2011).
  3. Panagiotopoulos P. D.  Nonconvex energy functions, hemivariational inequalities and substationary principles.  Acta Mechanica. 48 (3–4), 111–130 (1983).
  4. Naniewicz Z., Panagiotopoulos P. D.  Mathematical theory of hemivariational inequalities and applications.  Marcel Dekker Inc., New York (1995).
  5. Sofonea M., Migórski S.  Variational-hemivariational Inequalities with Applications.  Pure and Applied Mathematics. Chapman and Hall/CRC Press, Boca Raton–London (2018).
  6. Migórski S., Zeng S.  Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact.  ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 98 (8), 1503–1520 (2018).
  7. Afraites L., Hadri A., Laghrib A., Nachaoui M.  A high order PDE-constrained optimization for the image denoising problem.  Inverse Problems in Science and Engineering. 1-43 (2020).
  8. Khan A., Migórski S., Sama M.  Inverse problems for multi-valued quasi variational inequalities and noncoercvie variational inequalities with noisy data.  Optimization. 68 (10), 1897–1931 (2019).
  9. Gockenbach M. S., Khan A. A.  An abstract framework for elliptic inverse problems. In output least-squares approach.  Mathematics and Mechanics of Solids. 12 (3), 259–276 (2007).
  10. Hasanov A.  Inverse coefficient problems for monotone potential operators.  Inverse Problems. 13 (5), 1265–1278 (1997).
  11. Migórski S., Khan A., Shengda Z.  Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems.  Inverse Problems. 36 (2), 024006 (2020).
  12. Afraites L., Hadri A., Laghrib A.  A denoising model adapted for impulse and Gaussian noises using a constrained-PDE.  Inverse Problems. 36 (2), 025006 (2019).
  13. Prager W.  On elastic, perfectly locking materials.  In: Görtler H. (eds) Applied Mechanics. Springer, Berlin, Heidelberg (1966).
  14. Prager W.  On ideal-locking materials.  Transactions of the Society of Rheology. 1,  169–175 (1975).
  15. Migórski S., Ogorzaly J.  A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction.  Acta Mathematica Scientia. 37 (6), 1639–1652 (2017).
  16. Essoufi E.-H., Zafrar A.  Dual methods for frictional contact problem with electroelastic-locking materials.  Optimization. 70 (7), 1581–1608 (2020).
  17. Gamorsk P., Migórski S.  Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem.  Mathematics and Mechanics of Solids. 23 (3), 329–347 (2017).
  18. Zeng B., Migórski S.  Variational-hemivariational inverse problems for unilateral frictional contact.  Applicable Analysis. 99 (2), 293–312 (2020).
  19. Szafraniec P.  Analysis of an elasto-piezoelectric  system of hemivariational inequalities with thermal effects.  Acta Mathematica Scientia. 37 (4), 1048–1060 (2017).
  20. Nowacki W.  Foundations of linear piezoelectricity.  In: Parkus H. (ed.) Interactions in Elastic Solids. Springer, Wein (1979).
  21. Migórski S, Ochal A., Sofonea M.  Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems.  In: Advances in mechanics and mathematics, New York, Springer (2013).
  22. Sofonea M.  History-Dependent Inequalities for Contact Problems with Locking Materials.  Journal of Elasticity. 134, 127–148 (2019).