Analysis of blood flow through curved artery with mild stenosis

2022;
: pp. 217–225
https://doi.org/10.23939/mmc2022.02.217
Received: June 09, 2021
Accepted: January 21, 2022

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 217–225 (2022)

1
Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
2
Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
3
Department of Mathematics, R R Campus, Tribhuvan University, Kathmandu, Nepal
4
Department of Mathematics, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal

Building-up of plaque narrows arteries, decreasing blood flow to the heart, causing chest pain, shortness of breath, or other coronary artery disease signs and symptoms.  Implementing Navier–Stokes equations in a cylindrical coordinate system and assuming axial symmetry under laminar flow conditions, the study has been conducted on the two aspects of blood flow dynamics viz., velocity profile and volumetric flow rate of blood around curved stenosis with a variation of curvature of the artery and the stenosis thickness.  The blood flow behavior taking different values for the viscosity coefficient has been also studied.

  1. Tan F. P. P., Soloperto G., Wood N. B., Thom S., Hughes A., Xu X. Y.  Advanced computational models for disturbed and turbulent flow in stenosed human carotid artery bifurcation.  Proceeding of the 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. 21, 390–394 (2008).
  2. Phaijoo G. R.  Mathematical study of blood flow characteristics during catheterization in stenosed artery.  Unpublished dissertation in partial fulfillment of the requirements of Master of Philosophy, School of Science, Kathmandu University, Nepal (2013).
  3. Pralhad J. N., Schultz D. H.  Modeling of arterial stenosis and its applications to blood diseases.  Mathematical Biosciences. 190 (2), 203–220 (2004).
  4. Jain M., Sharma G. C., Singh R.  Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium.  International Journal of Engineering. 23 (3), 243–252 (2010).
  5. Kapur J. N.  Mathematical models in biology and medicine.  In: Models for blood flows. Affiliated East-West Press Pvt. Ltd. 347 (1985).
  6. Pokhrel P. R., Kafle J., Kattel P., Gaire H. P.  Analysis of blood flow through artery with mild stenosis.  Journal of Institute of Science and Technology. 25 (2), 33–38 (2020).
  7. Padmanabhan N., Jayaraman G.  Flow in a curved tube with constriction - an application to the arterial system.  Medical and Biological Engineering and Computing.  22 (3), 216–224 (1984).
  8. Chakravarty S.  Effects of stenosis on the flow-behaviour of blood in an artery.  International Journal of Engineering Science. 25 (8), 1003–1016 (1987).
  9. Dash R. K., Jayaraman G., Meheta K. N.  Flow in a catherized curved artery with stenosis.  Journal of Biomechanics. 32 (1), 49–61 (1999).
  10. Schilt S., Moore J. E., Delfino A., Meister J. J.  The effects of time-varying curvature on velocity profiles in a model of the coronary arteries.  Journal of Biomechanics.  29 (4), 469–474 (1996).
  11. Nosovitsky V. A., Ilegbusi O. J., Jiang J., Stone P. H., Feldman C. L.  Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow.  Computers and Biomedical Research. 30, 61–82 (1997).
  12. Santamarina A., Weydahl E., Siegel J. M., Moore J. E. Jr.  Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature.  Annals of Biomedical Engineering. 26, 944–954 (1998).
  13. Yao H., Ang K. C., Yeo J. H., Sim E. K. W.  Computational modelling of blood flow through curved stenosed arteries.  Journal of Medical Engineering & Technology.  24 (4), 163–168 (2000).
  14. Liu B.  The influences of stenosis on the downstream flow pattern in curved arteries.  Medical Engineering & Physics.  29 (8), 868–876 (2007).
  15. Kafle J., Pokhrel P. R., Khattri K. B., Kattel P., Tuladhar B. M., Pudasaini S. P.  Submarine landslide and particle transport in mountain lakes, reservoirs and hydraulic plants.  Annals of Glaciology.  57 (71), 232–244 (2016).
  16. Kafle J.,  Kattel P.,  Mergili M.,  Fischer J.-T., Pudasaini S. P.  Dynamic response of submarine obstacles to two-phase landslide and tsunami impact on reservoirs.  Acta Mechanica.  230 (9), 3143–3169 (2019).
  17. Kattel P., Khattri K. B., Pokhrel P. R., Kafle J., Tuladhar B. M., Pudasaini S. P.  Simulating glacial lake outburst floods with a two-phase mass flow model.  Annals of Glaciology.  57 (71), 349–358 (2016).
  18. Kattel P., Kafle J., Fischer J.-T., Mergili M., Tuladhar B. M., Pudasaini S. P.  Interaction of two-phase debris flow with obstacles.  Engineering Geology.  242, 197–217 (2018).
  19. Paudel K., Bhandari P., Kafle J.  Analytical solution for advection-dispersion equation of the pollutant concentration using laplace transformation.  Journal of Nepal Mathematical Society.  4 (1), 33–40 (2021).
  20. Kafle J., Bagale L., K. C. D. J.  Numerical solution of parabolic partial differential equation by using finite difference method.  Journal of Nepal Physical Society.  6 (2), 57–65 (2020).
  21. Pokhrel P. R., Lamsal B., Kafle J., Kattel P.  Analysis of displacement of vibrating of mass-spring due to opposition force.  Tribhuvan University Journal.  35 (1), 21–32 (2020).
  22. Kafle J., Thakur B. K., Bhandari I. B.  Visualization formulation and intuitive explanation of iterative methods for transient analysis of series RLC circuit.  Bibechana.  18 (2), 9–17 (2021).
  23. Adhikari K., Gautam R., Pokhrel A., Uprety K. N., Vaidya N. K.  Transmission dynamics of COVID-19 in Nepal: Mathematical model uncovering effective controls.  Journal of Theoretical Biology.  521 (21), 110680 (2021).
  24. Agarwal P., Nieto J. J., Ruzhansky M., Torres D. F. M.  Analysis of infectious disease problems (Covid-19) and their global impact.  Springer, Singapore (2021).
  25. Shrestha S., Gurung D. B., Gokul K. C.  Mathematical modeling of temperature variation in breast tissue with and without tumor/cyst during menstrual cycle.  Mathematical Modeling and Computing.  8 (2), 192–202 (2021).