Integration of physical and physical-chemical processes is a principle that is inextricably linked with the development of modern technologies. Trends in the integration of technological processes are also characteristic for branches of water treatment and preparation. The combination of processes makes it possible to significantly increase the degree of sewage treatment, reduce the duration and energy intensity of the purification process, the costs to maintain optimal reagent, temperature, hydrodynamic regimes, etc.
Technologies based on the combination of cavitation phenomena and traditional physico-chemical processes, in particular flotation, have huge prospects for the removal of hydrophobic disperse particles from wastewaters of food industry (meat processing, milk processing, oil), light industry (textile, leather, fur factories), mining industry. The purpose of the work was to establish the main characteristics of the flotation stage of dispersed solid particles (the size of the flotation bubbles, the intensity of their formation, the velocity of flotation) of the cavitation flotation technology, the definition of the structure of the flotation foam.
Synthesis of processes of cavitation and flotation is proposed to be carried out in a combined apparatus of a column type consisting of two parts: the lower – cavitation and the upper – separation. The rational limits of pressure change at the entrance to the cavitator (0,3...0,4 MPa) were found to provide effective flotation. Based on visual observations and photographic results, it has been established that film-structural foam is formed at such pressure values. The indicate of effective flotation was the presence on the surface of foam bubbles in the size of 0,01...0,03 m, which are partially covered with a film of mineral particles so that on their surfaces remained free areas. According to the results of acoustic analysis (frequency spectra of the acoustic signal of the cavitation field), the averaged radius of the flotation bubble is calculated – 1,8 mm. It was established that the average gas floodplainness of the flotation layer is ~ 0.05 m3/m3. Based on the results of gravimetric studies, the maximum velocity of flotation of calcium oxalate (13,2·10-4 kg/(m3·sec)) was calculated, which corresponds to a range of cavitation processing time of 600...900 sec.
1. Demidova, Yu. Ye. (2013). Teoretychni y eksperymentalni doslidzhennia protsesiv elektrokoahuliatsii ta kavitatsii pry pererobtsi vuhlevodnevmisnykh stokiv: avtoref. dys. kand. tekhn. nauk. Natsionalnyi tekhnichnyi universytet “Kharkivskyi politekhnichnyi instytut”, Kharkiv.
2. Hryshyn, B. M., Andreev, S. Yu., Bykuno- va, M. Kh., Hryshyn, L. B., Savytskyi, E. A., Kol- dov, A. S. (2010). Novaia tekhnolohyia ochystky neftesoderzhashchykh stochnыkh vod mashynostroytelnoho proyzvodstva, Trudы Mezhdunarodnoho sympozyuma “Nadezhnost y kachestvo”. Penza: PHU.
3. Tarasenkov, N. V. (2006). Hlubokaia ochystka stochnыkh vod ot orhanycheskykh zahriaznytelei flotatsyonno-kavytatsyonnыm metodom: avtoref. dys. kand. khym. nauk. HOU VPO “ Sankt-Peterburhskyi hosudarstvennыi unyversytet tekhnolohyy y dyzaina”, Sankt-Peterburh.
4. Bolonov, N. Y., Barыbyn, A. Y. (2009). Ustanovka dlia ochystky stochnыkh vod miasokombynatov. Visnyk Donetskoho natsionalnoho universytetu, 2, 400–401.
5. Znak, Z. O., Sukhatskyi, Yu. V., Mnykh, R. V. (2014). Rozroblennia kavitatsiino-flotatsiinoho protsesu ochyshchennia stichnykh vod v aspekti realizatsii suchasnykh kontseptsii syntezu khimiko-tekhnolohichnykh system. Visnyk Nats. un-tu “Lvivska politekhnika”, 787, 75–79.
6. Yavorskiy, V., Sukhatskiy, Yu., Znak, Z., Mnykh, R. (2016). Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chemistry & Chemical Technology, 10 (4), 507–513.
7. Ralston, J. (2000). Flotation. Bubble-particle capture. In C. Poole & M. Cooke, Encyclopedia of Separation Science (pp. 1464–1471). San Diego: Elsevier Science Publishing Co Inc.
8. Colic, M., Morse, W., Miller, J. D. (2007). The development and application of centrifugal flotation systems in wastewater treatment. Int. J. Environment and Pollution, 30 (2), 296–312.
9. Matynyn, A. S. (2013). Povыshenye selektyvnosty razdelenyia slabokontrastnыkh rud na osnove upravlenyia hydrodynamycheskym rezhymom flotatsyy: avtoref. dys. kand. tekhn. nauk). FHAOU VPO “ Natsyonalnыi yssledovatelskyi tekhnolohycheskyi unyversytet “MYSyS”, Moskva.
10. Znak, Z., Sukhatskiy, Yu. (2016). The Brandon method in modelling the cavitation processing of aqueous media. Eastern-European Journal of Enterprise Technologies, 3/8 (81), 37–42.
11. Yavorskyi, V. T., Znak, Z. O., Sukhats- kyi, Yu. V., Mnykh, R. V. (2016). Enerhetychni kharakterystyky obroblennia ahresyvnykh vodnykh seredovyshch u hidrodynamichnykh kavitatorakh. Fizyko-khimichna mekhanika materialiv, 52 (4), 132–136.
12. Znak, Z. O., Sukhatskiy, Yu. V., Mnykh, R. V., Tkach, Z. S. (2018). Thermochemical analysis of energetic in the process of water sonolysis in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii, 3 (118), 64–69.
13. Metter, Y. (1948). Fyzycheskaia pryroda kavytatsyy y mekhanyzm kavytatsyonnыkh povrezhdenyi. Uspekhy fyzycheskykh nauk, 35 (1), 52–79.
14. Sablii, L. A. (2013). Fizyko-khimichne ta biolohichne ochyshchennia vysokokontsentrovanykh stichnykh vod. Rivne: NUVHP.
15. Konontsev, S. V., Sablii, L. A., Hrokhovska, Yu. R. (2011). Ekolohichna biotekhnolohiia ochyshchennia stichnykh vod ta kultyvuvannia kormovykh orhanizmiv. Rivne: NUVHP.
16. Smyrnov, V. O., Biletskyi, V. S. (2010). Flotatsiini metody zbahachennia korysnykh kopalyn. Donetsk: Skhidnyi vydavnychyi dim.
17. Matnyiazova, H. K. (2012). Yntensyfykatsyia protsessa ochystky mutnыkh vod ot vzveshennыkh chastyts. (Dys. dok. fylosofyy (PhD)). Tarazskyi hosudarstvennыi unyversytet ymeny M. Kh. Dulaty, Taraz.