Purpose. The main purpose of this paper is to study tectonic paleostress field evolution, its influence on the calcite veins formation and fluid flow in the southeastern part of the Ukrainian Carpathians during the Cenozoic time. The objects of our studies are joints parageneses, slickensides and veins in the Cretaceous sandstones located over the Chornohora, Dukla, Porkulets and Rakhiv nappes in the southeastern part of the Ukrainian Carpathians. Methods. To reconstruct the stress-strain state structural-paragenetic and kinematic methods were used. Fabric 8, StereoNett 2.46, and Tensor software was used to process the data and to determine the principal axes of paleostress field (σ1, σ2, σ3). Slickenside data were processed by using kinematic method with some modern modifications for the Carpathian region. Special attention was paid to the veins in the host rocks. Results. Within the study area we found 16 natural outcrops, 850 joints, 300 veins and 50 slickensides. Further, we described veins structural features and paleostress fields that could initiate joints formation. Not at all outcrops calcite veins were found. The statistically reliable number of carbonate veins was identified only at few study points. It is very important to study not only veins structural features but mineralogy, morphology, crystal microdefects, and fluid inclusions as well. Originality. For the first time we reconstructed tectonic paleostress fields evolution in the southeastern part of the Ukrainian Carpathians during the Cenozoic time by using data on joints and slickensides. The most active tectonic movements, deformation and carbonate veins formation are attributed to the strike-slip and tension paleostress fields. Strike-slip paleostress fields are defined as the youngest, and their tension axes are orientated in NE-SW and NW-SE directions. The number of calcite veins within the Dukla and Porkulets nappes is much more greater than that within the Chornohora and Rakhiv ones. Almost all veins strike in north-west direction. Ancient joints could be reactivated and filled with calcite simultaneously with subsequent tension regimes. Practical significance. Paleostress fields originated at the end of folding-faulting stage indicate that the strike-slip deformation regime changed due to tension in two directions (SE and SW tension axes). The detailed study of veins showed that their formation is the result of newly formed and reactivated joints and fractures filled by the matter due to the younger mechanical deformations. Calcite filled shear and tension joints formed as the result of different deformation regimes, starting from the folding-faulting stage. We conclude that intensive migration of fluids, including hydrocarbons fluids, took place at the end of folding-faulting stage of the Ukrainian Carpathian tectonic evolution.
1. Angelier J. Tectonic analysis of fault slip data sets. 1984. J. Geophys. Res. No. 8 (B7). p. 5835-5848.
https://doi.org/10.1029/JB089iB07p05835
2. Bratus M., Lomov S. Umovy mineraloutvorennya ta izotopna pryroda komponentiv flyuyidiv u zhylakh sered osadovykh porid Skladchastykh Karpat [Mineral formation and isotopic nature of fluid components of veins in sedimentary rocks in the Folded Carpathians]. Geolohiya i Geokhimiya goryuchykh kopalyn [Geology and Geochemistry of Combustible Minerals], 1996, Vol. 1-2, pp. 94-95.
3. Ciulavu D., Dinu C., Szakacs A., Dordea D. Neogene kinematics of the Transylvanian basin (Romania). 2000. American Association of Petroleum Geologists. Vol. 84(10). p. 1589-1615.
https://doi.org/10.1306/8626BF0B-173B-11D7-8645000102C1865D
4. Gintov O. B. Polevaya tektonofizika i ee primenenie pri izuchenii deformatsiy zemnoy kory Ukrainy [Field Tectonophysics and Its Application in Studies of the Earth's Crust Deformation in Ukraine]. Phenix, Kiev, 2005, 572 p.
5. Gintov O. B., Bubniak I. M., Vikhot Yu. M., Murovska¬ya A. V., Nakapelyukh M. V. Evolyutsiya naprya¬zhenno-deformirovannogo sostoyaniya i dinamika Skibovogo pokrova Ukrainskikh Karpat [Strain-deformed state and dynamics of the Skyba nappe of the Ukrainian Carpathians]. Geofizicheskij zhurnal [Geophysical Journal], 2011, issue 33 (5), pp. 17-34.
6. Gintov O. B., Bubniak I. M., Bubniak A. M., Vikhot Yu. M., Mychak S. V., Nakapelyukh M. V. Naprjazhenno-deformirovannoe sostojanie i dinamika allohtonnoj chasti Predkarpatskogo progiba v svjazi s neftegazonosnost'ju (po tektonofizicheskim dannym) [The stress-strain state and the dynamics of allochthon part of the Ukrainian Carpathian foredeep in connection with oil and gas content (by tectonophysical data)] Geofizicheskij zhurnal [Geophysical Journal]. 2013, issue 35 (1), pp. 75-87.
7. Guschenko O. I. Metod kinematicheskogo analiza struktur razrusheniya pri rekonstruktsii poley tektonicheskikh napryazheniy [Method of kine-matic analysis of fracture structures in the reconstruction of tectonic stress fields]. Polya napryazheniy i deformatsiy v litosfere [Stress and strain fields in the lithosphere], 1979, pp. 7-25.
8. Fodor L., Csontos L., Bada G., Györfi I., Benkovics L. Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of paleostress data. 1999. Geological Society. Special Publication. London. Vol. 156. p. 295-334.
https://doi.org/10.1144/GSL.SP.1999.156.01.15
9. Faulkner D. R., Jackson C. A. L., Lunn R. J., Schlische R. W., Shipton Z. K., Wibberley C. A. J., Withjack M. O. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. 2010. Journal of Structural Geology. Vol. 32. p. 1557-1575.
https://doi.org/10.1016/j.jsg.2010.06.009
10. Fedoryn Ya. Vulkano-tektonicheskie struktury severo-zapadnoy chasti Marmaroshskogo massiva. Avtoreferat Diss. [Volcanic and tectonic structures of the Northwestern part of the Maramorosh massif. Author's abstract.]. Kyiv, 1981, 27 p.
11. Konon A. Tectonics of the Beskid Wyspowy Mountains (Outer Carpathians, Poland). 2001. Geological Quaterly. Vol. 45(2). p. 179-204.
12. Matenco L., Bertotti G., Dinu C., Cloetingh S. Tertiary tectonic evolution of the external South Carpathians and the adjacent Moesian platform (Romania). 1997. Tectonics. Vol. 16(6). p. 896-911.
https://doi.org/10.1029/97TC01238
13. Matenco L., Bertotti G. Tertiary tectonic evolution of the external East Carpathians (Romania). 2000. Tectonophysics. Vol. 316(3-4). p. 255-286.
https://doi.org/10.1016/S0040-1951(99)00261-9
14. Matskiv B., Pukach B., Pastukhanova S., Vorobka-nych V. Heolohichna karta dochetvertynnykh utvoren' masshtabu 1:200 000 arkushiv M-35-XXXI (Nadvirna) ta L-35-I (Visheu-de-Sus) [Geological map of the Prequaternary formation, scale 1:200 000 sheets M-35-XXXI (Nadvirna) and L-35-I (Visheu-de-Sus).] Derzhavne pidpry-yemstvo "Zakhidukrheolohiya" [Government Enterprises "Westukrgeology"]. Lviv, 2006.
15. Matviyenko O., Naumko I., Bubniak A., Bubniak I., Popivniak I., Sakhno B., Tsikhon S. Flyuyidnyy rezhym formuvannya zhyl'nykh utvoren' u riznovikovykh vidkladakh ukrayins'koyi chastyny Skladchastykh Karpat [Fluid regime of veins formation in different age sediments of the Ukrainian part of the Carpathians]. Visnyk L'vivs'koho universytetu. Seriya geolohichna [Proceeding of the Lviv University. Geological Series]. 2004, Vol. 18, pp. 239-246.
16. Minissale A. Origin, transport and discharge of CO2 in central Italy. 2004. Earth-Science Reviews. Vol. 66. p. 89-141.
https://doi.org/10.1016/j.earscirev.2003.09.001
17. Molli G., Cortecci G., Vaselli L., Ottria G., Cortopassi A., Dinelli E., Mussi M., Barbieri M. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy). 2010. Journal of Structural Geology. Vol. 32. p. 1334-1348.
https://doi.org/10.1016/j.jsg.2009.04.021
18. Nemcok M. Transition from convergence to escape: field evidence from the West Carpathians. 1993. Tectonophysics. Vol. 217(1-2). p. 117-142.
https://doi.org/10.1016/0040-1951(93)90207-Z
19. Nemcok M., Hok J., Kovac P., Marko F., Coward M.P., Madaras J., Houghton J., Bezak V. Tertiary extension development and extension/compression interplay in the West Carpathians mountain belt. 1998. Tectonophysics. Vol. 290(1-2). p. 137-167.
https://doi.org/10.1016/S0040-1951(98)00016-X
20. Nemcok M., Pogácsás G., Pospišil L. Activity timing of the main tectonic systems in the Carpathian-Pannonian region in relation to the rollback destruction of the lithosphere. In: Golonka J., Picha F.J. (Eds.), The Carpathians and their foreland: geology and hydrocarbon resources. 2006. The AAPG, Tulsa, Oklahoma, USA. p. 743-766.
https://doi.org/10.1306/985627M843083
21. Ratschbacher L., Frisch W., Linzer H.G., Sperner B., Meschede M., Decker K., Nemcok M., Nemcok J., Grygar R. The Pieniny Klippen Belt in the Western Carpathians of northeastern Slovakia: structural evidence for transpression. 1993a Tectonophysics. Vol. 226(1-4). p. 471-483.
https://doi.org/10.1016/0040-1951(93)90133-5
22. Ratschbacher L., Linzer H. G., Moser F., Strusie-vicz R.O., Bedelean H., Har N., Mogos P.A. Cretaceous to Miocene thrusting and wrenching along the central South Carpathians due to a corner effect during collision and orocline formation. 1993b. Tectonics. Vol. 12(4). p. 855-873.
https://doi.org/10.1029/93TC00232
23. Roure F., Roca E., Sassi W. The Neogene evolution of the Outer Carpathian flysch units (Poland, Ukraine and Romania): kinematics of a foreland / fold and thrust belt system. 1993. Sedimentary Geology. Vol. 86(1-2). p. 177-201.
https://doi.org/10.1016/0037-0738(93)90139-V
24. Ślączka A., Kruglov S., Golonka J., Oszczypko N., Popadyuk I. Geology and hydrocarbon resources of the Outer Carpathians, Poland, Slovakia, and Ukraine: general geology. 2006. AAPG Mem., 84. p. 221-258.
https://doi.org/10.1306/985610M843070
25. Shlapinskyy V. E. Some aspects of the Ukrainian Carpathian tectonics. 2012. Proceedings of the Shevchenko Scientific Society. Geological Collection XXX. p. 48-67.
26. Świerczewska, A., Tokarski, A. K. & Hurai, V. Joints and veins during structural evolution: case study from the Outer Carpathians (Poland). 2000. Geological Quarterly. Vol. 44(3). p. 333-339.