PREPARING OF METALLIC ELECTROCATALYTIC NANOSTRUCTURED SURFACE BY GALVANIC REPLACEMENT METHOD (REVIEW)

2019;
: 25-34
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The possibilities of the galvanic replacement method in the formation of a metallic nanostructured surface for electrocatalytic processes are revealed. Based on the electrochemical mechanism of the process and taking into account the type of substrate, the following directions of application of this method are presented: metal surface modification and synthesis of metallic nanostructures. The main methods of preparation of electrocatalysts based on nanostructured metal systems obtained by galvanic replacement are: 1) substitution directly on the metal surface of the electrode; 2) fixation to the electrode surface of pre-synthesized nanostructures. The peculiarities of modification of copper, silver and nickel surfaces with catalytically active metals are considered: Pt, Pd, Au, Ag, Ir. It was established that the application of a metal or bimetallic nanostructured to a metal surface leads to the formation of a metal / lining system, which is characterized by new functional properties. The conditions of galvanic replacement can be regulated by the dimension and morphology of the metal sediment and, accordingly, the electrocatalytic properties of the electrodes on their basis.

It is shown that the method of galvanic replacement as a controlled synthesis of mono- and bimetal nanomaterials is most studied for Ag/Pt, Cu/Pt, Cu/Au, Cu/Pd,  Ni/Pd, Ni/Pt, Сo/Pt systems. A template for the synthesis of nanostructures is predominantly stabilized nanocubes of copper, silver, nickel, and copper nanowires. In this case, galvanic replacement produce hollow nanostructures and core@shell type structures.

Among the successes in the direction of surface modification, the efficiency of deposition of nanostructured metals by galvanic replacement in the environment of organic aprotic solvents and ionic liquids has been demonstrated. The role of the medium in the controlled formation of the geometry of the metal sediment particles and the efficiency of the electro-catalytic reactions is noted. 

1. Yae, S., Morii, Y., Fukumuro, N., Matsuda, H. (2012). Catalytic activity of noble metals for metal-assisted chemical etching of silicon. Nanoscale Research Letters, 7, 352.
https://doi.org/10.1186/1556-276X-7-352
2. Chen, L., Jing, Q., Chen, J., Wang, B., Huang, J., Liu, Y. (2013). Silver nanocrystals of various morpho¬logies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering. Materials characterization, 85, 48-56.
https://doi.org/10.1016/j.matchar.2013.09.001
3. Russo, L., Merkoci, F., Patarroyo, J., Piella, J., Merkoc, A., Bastus, N. G., Puntes, V. (2018). Time- and Size-Resolved Plasmonic Evolution with nm Resolution of Galvanic Replacement Reaction in AuAg Nanoshells Synthesis. Chemistry of Materials, 30, 5098-5107.
https://doi.org/10.1021/acs.chemmater.8b01488
4. Katas, H., Moden, N. Z., Lim, C. S., Celesistinus, T., Chan, J. Y., Ganasan, P., Abdalla, S. (2018). Biosynthesis and Potential Applications of Silver and Gold Nanoparticles and Their Chitosan-Based Nanocom¬posites in Nanomedicine. Journal of Nanotechnology, 4290705, 13.
https://doi.org/10.1155/2018/4290705
5. Papaderakis, A., Mintsouli, I., Georgieva, J., Sotiropoulos, S. (2017). Electrocatalysts Prepared by Galvanic Replacement. Journal of Catalysis, 80, 34.
https://doi.org/10.3390/catal7030080
6. Reis Machado, A. S., Nunes da Ponte, M. (2018). CO2 capture and electrochemical conversion. Green and Sustainable Chemistry, 11, 86-90.
https://doi.org/10.1016/j.cogsc.2018.05.009
7. Кунтий, О. І. (2008). Електрохімія і морфологія дисперсних металів. Монографія. Львів: НУ "ЛП", 208.
8. Zhang, X., Zhou, Y., Zhang, B., Zhan, J. (2017). An improved galvanic replacement deposition method for synthesis of compact palladium coatings on copper substrates. Materials Letters, 15, 75-78.
https://doi.org/10.1016/j.matlet.2017.03.119
9. Xia, X., Wang, Y., Ruditskiy, A., Xia, Y. (2013). 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Advanced Materials, 25, 6313-6333.
https://doi.org/10.1002/adma.201302820
10. Papaderakis, A., Pliatsikas, N., Prochaska, C., Papazisi, K. M., Balomenou, S. P., Tsiplakides, D., Patsalas, P., Sotiropoulos, S. (2014). Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement. Frontiers in Chemistry, 2, 29.
https://doi.org/10.3389/fchem.2014.00029
11. Papaderakis, A., Pliatsikas, N., Prochaska, C., Vourlias, G., Patsalas, P., Tsiplakides, D., Balomenou, S., Sotiropoulos, S. (2016). Oxygen evolution at IrO2 shell-Ir-Ni core electrodes prepared by galvanic replacement. The Journal of Physical Chemistry C, 120, 19995-20005.
https://doi.org/10.1021/acs.jpcc.6b06025
12. Brankovic, S. R., Wang, J.X., Adži'c, R. R. (2001). Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surface Science, 474, L173-L179.
https://doi.org/10.1016/S0039-6028(00)01103-1
13. Brankovic, S.R., McBreen, J., Adži'c, R. R. (2001). Spontaneous deposition of Pt on the Ru(0001) surface. Journal of Electroanalytical Chemistry, 503, 99-104.
https://doi.org/10.1016/S0022-0728(01)00349-7
14. Kokkinidis, G., Stoychev, D., Lazarov, V., Papoutsis, A., Milchev, A. (2001). Electroless deposition of Pt on Ti: Part II. Catalytic activity for oxygen reduc¬tion. Journal of Electroanalytical Chemistry, 511, 20-30.
https://doi.org/10.1016/S0022-0728(01)00505-8
15. Van Brussel, M., Kokkinidis, G., Hubin, A., Buess-Herman, C. (2003). Oxygen reduction at platinum modified gold electrodes. Electrochimica Acta, 48, 3909-3919.
https://doi.org/10.1016/S0013-4686(03)00529-2
16. Rezaei, B., Saeidi-Boroujeni, S., Havakeshian, E., Ensafi, A. A. (2016). Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using galvanic replacement. Electrochimica Acta, 203, 41-50.
https://doi.org/10.1016/j.electacta.2016.04.024
17. Kang, Y., Chen. F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667-677.
https://doi.org/10.1007/s10800-013-0563-0
18. Balkis, A., Crawford, J., O'Mullane, A. P. (2018). Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion. Nanomaterials. 8, 756.
https://doi.org/10.3390/nano8100756
19. Rezaei, B., Mokhtarianpour, M., Ensafi, A. (2015). Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. Hydrogen energy, 1-9.
https://doi.org/10.1016/j.ijhydene.2015.03.122
20. Podlovchenko, B. I., Maksimov, Yu. M., Mas-lakov, K. I., Volkov, D. S., Evlashin, S. A. (2017). Galvanic displacement and electrochemical leaching for synthesizing Pd-Ag catalysts highly active in FAOR. Electroanalytical Chemistry, 788, 217-224.
https://doi.org/10.1016/j.jelechem.2017.02.012
21. Chena, C., Zhangb, B., Zhongb, J., Cheng Z. (2017). Selective electrochemical CO2 reduction over highly porous gold films. Materials Chemistry A, 5,21955-21964.
https://doi.org/10.1039/C7TA04983H
22. Papaderakis, A., Prochaska, C., Pliatsikas, N., Patsalas, P. (2016). Oxygen Evolution at IrO2 Shell−Ir−Ni Core Electrodes Prepared by Galvanic Replacement. The Journal of Physical Chemistry C, 120, 19995-20005.
https://doi.org/10.1021/acs.jpcc.6b06025
23. Rong, Z. J., Zhang, Q., Siwal, S. S. (2019). Galvanic Replacement-Mediated Synthesis of Ni-Supported Pd Nanoparticles with Strong Metal-Support Interaction for Methanol Electro-oxidation. Small.
24. Niu, X., Xiong, Q., Li, X., Zhang, W. (2017). Incorporating Ag into Pd/Ni Foam via Cascade Galvanic Replacement to Promote the Methanol Electro-Oxidation Reaction. Journal of The Electrochemical Society, 164, 651-657.
https://doi.org/10.1149/2.1551706jes
25. Hosseini, G., Abdolmaleki, M., Daneshvari Esfahlan, V. (2017). Porous Co/Co-Ni-Pt nanostructures prepared by galvanic replacement towards methanol electro-oxidation. Porous Materials, 24, 305-313.
https://doi.org/10.1007/s10934-016-0264-2
26. Bansal, V., O'Mullane, A. P., S.K. Bhargava, S. K. (2009). Galvanic replacement mediated synthesis of hollow Pt nanocatalysts: Significance of residual Ag for the H2 evolution reaction. Electrochemistry Commu-nications, 11, 1639-1642.
https://doi.org/10.1016/j.elecom.2009.06.018
27. Li, Q., Wu, G., Xu, P., Zhao, H. (2013). Self-supported Pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts. Nanoscale, 5, 7397-7402.
https://doi.org/10.1039/c3nr02243a
28. Mintsouli, I., Georgieva, J., Papaderakis, A., Armyanov, S. (2016). Methanol oxidation at platinized copper particles prepared by galvanic replacement. Journal of Electrochemical Science and Engineering, 6(1), 17-28.
29. Mathurin, L. E., Benamara, M., Tao, J., Zhu, Y. (2018). Tailoring the Surface Structures of CuPt and CuPtRu 1D Nanostructures by Coupling Coreduction with Galvanic Replacement. Particle Systems Charac-terization, 35.
https://doi.org/10.1002/ppsc.201800053
30. Mintsouli, I., Georgieva, J., Armyanov, S., Valova, E. (2013). Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors. Catalysis B: Environmental, 136-137, 160-167.
https://doi.org/10.1016/j.apcatb.2013.01.059
31. Podlovchenko, B. I., Krivchenko, V. A., Maksimov, Y. M., Gladysheva, T. D. Specific features of the formation of Pt(Cu) catalysts by galvanic displacement with carbon nanowalls used as support. Electrochimica Acta, 76, 137-144.
https://doi.org/10.1016/j.electacta.2012.04.124
32. Geboes, B., Mintsouli, I., Wouters, B., Georgieva, J. (2014). Surface and electrochemical characterisation of a Pt-Cu/C nano-structured electrocatalyst, prepared by galvanic displacement. Applied Catalysis B: Envi-ronmental, 150-151, 249-256.
https://doi.org/10.1016/j.apcatb.2013.12.020
33. Zhou, J., Lan, D., Yang, S., Guo, Y. (2018). Thin-wall hollow Au-Cu nanostructures with high efficiency in electrochemical reduction of CO2 to CO. Inorganic Chemistry Frontiers, 5, 1524-1532.
https://doi.org/10.1039/C8QI00297E
34. Farsadrooh, M., Noroozifar, M., Modarresi-Alam, A., Saravani, H. (2019). Sonochemical synthesis of high-performance Pd@CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media. Ultrasonics Sonochemistry, 51, 478-486.
https://doi.org/10.1016/j.ultsonch.2018.06.011
35. Maitya, S., Harisha, S., Eswaramoorthy, M. (2019). Controlled galvanic replacement of Ni in Ni(OH)2 by Pd: A method to quantify metallic Ni and to synthesize bimetallic catalysts for methanol oxidation. Materials Chemistry and Physics, 221, 377-381.
https://doi.org/10.1016/j.matchemphys.2018.09.071
36. Van Vinh, P., Ta, V. (2017). Synthesis of NiPt alloy nanoparticles by galvanic replacement method for direct ethanol fuel cell. Hydrogen energy, 42, 13192-13197.
https://doi.org/10.1016/j.ijhydene.2017.01.236
37. Hu, S., Ribeiro, E., Tian, M., Mukherjee, D. (2016). Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) for the production of PtCo nanoalloys as oxygen reduction electrocatalysts. Journal of Power Sources, 306, 413-423.
https://doi.org/10.1016/j.jpowsour.2015.11.078
38. Hu, S., Goenaga, G., Melton, C., Zawodzinski, T. (2016). PtCo/CoOx Nanocomposites: Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Synthesized via Tandem Laser Ablation Synthesis in Solution-Galvanic Replacement Reactions. Catalysis B: Environmental, 182, 286-296.
https://doi.org/10.1016/j.apcatb.2015.09.035
39. Hsu, C., Huang, C., Hao, Y., Liu, F. (2012). Au/Pd core-shell nanoparticles for enhanced electrocatalytic activity and durability. Electrochemistry Communications, 23, 133-136.
https://doi.org/10.1016/j.elecom.2012.07.027
40. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., Korniy, S. (2018). Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions. Chemistry & Chemical Technology, 12, 305-309.
https://doi.org/10.23939/chcht12.03.305
41. Dobrovets'ka, O., Kuntyi, O., Zozulya, G., Saldan, I., Reshetnyak, O. (2015). Galvanic deposition of gold and palladium on magnesium by the method of substitution. Materials Science, 51, 418-423.
https://doi.org/10.1007/s11003-015-9857-1
42. Kuntyi, О., Zozulya, G., Shepida, M., Nichkalo, S.(2019). Deposition of nanostructured metals on the surface of silicon by galvanic replacement: a mini-review. Voprosy khimii i khimicheskoi tekhnologii, 124(3),74-82.
https://doi.org/10.32434/0321-4095-2019-124-3-74-82
43. Lahiri, A., Pulletikurthi, G., Endres, F. (2019). A Review on the Electroless Deposition of Functional Materials in Ionic Liquids for Batteries and Catalysis. Frontiers in Chemistry, 7, 13.
https://doi.org/10.3389/fchem.2019.00085