The conditions for the synthesis of colloidal solutions of silver nanoparticles by galvanic replacement in an ultrasonic field and the AgAuNP binary system by galvanic replacement have been studied. It has been shown that colloidal solutions of stabilized nanoparticles with absorption maxima at 410 nm (AgNPs) and 540...560 nm (AgAuNPs) are formed in solutions of sodium polyacrylate and metal precursors of AgNO3 and H[AuCl4]. The synthesized AgAuNPs are spherical in shape and their size does not exceed 20 nm.
[1] Habibullah, G.; Viktorova, J.; Ruml, T. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett. 2021, 16, 47. https://doi.org/10.1186/s11671-021-03480-8
[2] Rodrigues, T.S.; Da Silva, A.G.M.; Camargo, P.H.C. Nanocata- lysis by Noble Metal Nanoparticles: Controlled Synthesis for the Optimization and Understanding of Activities. J. Mater. Chem. A 2019, 7, 5857–5874. https://doi.org/10.1039/c9ta00074g
[3] Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masa- rudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Abdullah, C.A.C.; Ahmad, S.A. Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. https://doi.org/10.3390/ma15020427
[4] Wahab, M.A.; Luming, L.; Matin, M.A.; Karim, M.R.; Aijaz, M.O.; Alharbi, H.F.; Abdala, A.; Haque, R. Silver Micro- Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedi- cal Applications, and Mechanisms of Action. Polymers 2021, 13, 2870. https://doi.org/10.3390/polym13172870
[5] Parmar, S.; Kaur, H.; Singh, J.; Matharu, A.S.; Ramakrishna, S.; Bechelany, M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. Nanomaterials 2022, 12,1115. https://doi.org/10.3390/nano12071115
[6] Kuntyi, О.І.; Kytsya, А.R.; Mertsalo, I.P.; Mazur, А.S.; Zozula, G.І.; Bazylyak, L.I.; Тоpchak, R.V. Electrochemical Synthesis of Silver Nanoparticles by Reversible Current in Solutions of Sodium Polyacrylate. Colloid Polym. Sci. 2019, 297, 689–695. https://doi.org/10.1007/s00396-019-044884
[7] Kuntyi, O.; Shepida, M.; Sozanskyi, M.; Mazur, A.; Kytsya, A.; Bazylyak, L. Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution. Biointerf. Res. Appl. Chem. 2020, 11, 12202–12214. http://doi.org/10.33263/briac114.1220212214
[8] Anik, M.I.; Mahmud, N.; Masud, A.A.; Hasan, M. Gold Nano- particles (GNPs) in Biomedical and Clinical Applications: A Re- view. Nano Select. 2022, 3, 792–828. https://doi.org/10.1002/nano.202100255
[9] Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. https://doi.org/10.3390/molecules26195823
[10] Timoszyk, A.; Grochowalska, R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics 2022, 14, 2599. https://doi.org/10.3390/pharmaceutics14122599
[11] Mazur, A.; Shepida, M.; Zozulya, G.; Kuntyi, O. Synthesis of Gold Nanoparticles by Sonogalvanic Replacement in Sodium Poly- acrylate Solutions. 2023 IEEE 13th International Conference Na- nomaterials: Applications & Properties (NAP),10-15 September, Bratislava, 2023. https://doi.org/10.1109/NAP59739.2023.10310801
[12] Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.C.; Gru- mezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. https://doi.org/10.3390/nano10112318
[13] Shabaninezhad, M.; Ramakrishna G. Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver Nanoparticles. Plasmonics, 2020, 15, 783–795. https://doi.org/10.1007/s11468-019-01102-9
[14] Znak, Z.; Kochubei V. Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity. Chem. Chem. Technol. 2023, 17, 646–654. https://doi.org/10.23939/chcht17.03.646
[15] Datta, D.; Deepak, K.S.; Das, B. Progress in the Synthesis, Characterisation, Property Enhancement Techniques and Applica- tion of Gold Nanoparticles: A Review. MRS Commun. 2022, 12, 700–715. https://doi.org/10.1557/s43579-022-00216-2
[16] Sengani, M.; Grumezescu, A.M.; Rajeswari, V.D. Recent Trends and Methodologies in Gold Nanoparticle Synthesis - A Prospective Review on Drug Delivery Aspect. Open Nano 2017, 2, 37–46. https://doi.org/10.1016/j.onano.2017.07.001
[17] Idris, D.S.; Roy, A. Synthesis of Bimetallic Nanoparticles and Applications-An Updated Review. Crystals 2023, 13, 637. https://doi.org/10.3390/cryst13040637
[18] Loza, K.; Heggen, M.; Epple, M. Synthesis, Structure, Proper- ties, and Applications of Bimetallic Nanoparticles of Noble Metals. Adv. Function. Mater. 2020, 30, 1909260. https://doi.org/10.1002/adfm.201909260
[19] Fu, J.; Wang, S.; Zhu, J.; Wang, K.; Gao, M.; Wang, X.; Xu, Q. Au-Ag Bimetallic Nanoparticles Decorated Multi-Amino Cyclo- phosphazene Hybrid Microspheres as Enhanced Activity Catalysts for the Reduction of 4-Nitrophenol. Mater. Chem. Phys. 2018, 207, 315–324. https://doi.org/10.1016/j.matchemphys.2018.01.002
[20] Silva, A.G.M.; Rodrigues, T.S.; Haigh, S.J.; Camargo, P.H.C. Galvanic Replacement Reaction: Recent Developments for Engi- neering Metal Nanostructures Towards Catalytic Applications.Chem. Commun. 2017, 53, 7135−7148.https://doi.org/10.1039/C7CC02352A
[21] Cheng, H.; Wang, C.; Qin, D.; Xia, Y. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches. Acc. Chem. Res. 2023, 56, 900−909. https://doi.org/10.1021/acs.accounts.3c00067
[22] Wu, C.; Mosher, B.P.; Zeng, T. Chemically-mechanically Assisted Synthesis of Metallic and Oxide Nanoparticles in Ambient Conditions. J. Nanosci. Nanotechnol. 2008, 8, 386–389. https://doi.org/10.1166/jnn.2008.18144
[23] Kuntyi, О.; Zozulya, G.; Kytsya, A. “Green” Synthesis of Metallic Nanoparticles by Sonoelectrochemical and Sonogalvanic Replacement Methods. Bioinorg Chem Appl. 2021, 2021, 9830644. https://doi.org/10.1155/2021/9830644
[24] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Kytsya, A.; Bazylyak, L. Synthesis of Silver Nanoparticles by Sonogalvanic Replacement on Aluminium Powder in Sodium Polyacrylate Solutions. Ultrason Sonochem. 2022, 84, 105951.https://doi.org/10.1016/j.ultsonch.2022.105951
[25] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Sozanskyi, M. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Re- placement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493–499. https://doi.org/10.23939/chcht15.04.493
[26] Niu, K.-Y.; Kulinich, S.A.; Yang, J.; Zhu, A.L.; Du, X.-W. Galvanic Replacement Reactions of Active-Metal Nanoparticles. Chem. Eur. J. 2012, 18, 4234–4241.https://doi.org/10.1002/chem.201102544
[27] Asselin, J.; Boukouvala, C.; Wu, Y.; Hopper, E.R.; Collins, S.M.; Biggins, J.S.; Ringe, E. Decoration of Plasmonic Mg Nano- particles by Partial Galvanic Replacement. J. Chem. Phys. 2019, 151, 244708. https://doi.org/10.1063/1.5131703
[28] Kuntyi, О.І.; Zozulya, G.I.; Shepida, M.V. Nanoscale Galvanic Replacement in Non-Aqueous Media: A Mini-Review. Vopr.Khimii i Khimicheskoi Tekhnologii 2020, 4, 5–15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
[29] Bastús, N.G.; Merkoçi, F.; Piella, J.; Puntes V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem. Mater. 2014, 26, 2836–2846. https://doi.org/10.1021/cm500316k
[30] Znak, Z.O.; Sukhatskiy, Yu.V.; Mnykh, R.V.; Tkach, Z.S. Thermochemical Analysis of Energetics in the Process of Water Sonolysis in Cavitation Fields. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 3, 64−69.
[31] Pollet, B.G. The Use of Ultrasound for the Fabrication of Fuel Cell Materials. Int. J. Hydrogen Energy 2010, 35, 11986–12004. https://doi.org/10.1016/j.ijhydene.2010.08.021