The study of the metrological risks of the car cables’ production is provided in the current issue. It is proposed to develop several different sampling methods to form lots for the study. Their capabilities are evaluated according to selected criteria based on the available technology. The advantages of the dynamic method according to the possibilities of operative metrological workshops are shown. Certain advantageous factors of the method (e.g. percentage of cables to be measured; the lot’s waiting time, etc.) have been identified.
[1] Toyota Recalls Tundra Pickups for Headlights That Catch Fire. Consumer Reports, Sept. 2021 [Online]. Available: https://www.consumerreports.org/car-recalls-defects/toyotatundra-pickup-...
[2] ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:17025:ed3:v1:en
[3] Cyber-Physical Systems and Metrology 4.0. Coeditors S.Yatsyshyn, B.Stadnyk, IFSA Publishing, Barcelona, 2021. [Online]. Available: https://www.sensorsportal.com/ HTML/BOOKSTORE/Cyber-Physical_Systems_and_Metrology _4_0.htm
[4] Ya. Demirel, V.Gerbaud, Nonequilibrium Thermodynamics, in Chapter 1. Fundamentals of Equilibrium Thermodynamics, Elsevier, 2019
https://doi.org/10.1016/B978-0-444-64112-0.00001-0
[5] L. Jones, A. Chin, Electronic Instruments and Measurements, Prentice-Hall,1991.
[6] J.-M. Pou, L.Leblond, “Smart Metrology: From the metrology of instrumentation to the metrology of decisions”, Art. 01007, Jan. 2017 Conf.: 18th Int. Congress of Metrology.
https://doi.org/10.1109/MIM.2017.7919126
[7] ISO/IEC Guide 98-4:2012. Uncertainty of measurement – Part 4: Role of measurement uncertainty in conformity assessment. [Online]. Available: https://www.iso. org/ru/standard/50465.html
[8] S. Kudva, R. Potter, “Cost analysis and risk assessment for metrology applications”, in Proc. Vol. 1673, Integrated Circuit Metrology, Inspection, and Process Control VI; Event: Microlithography '92, USA, 1992
https://doi.org/10.1117/12.59780
[9] J. Perez, Risk minimization through metrology in semiconductor manufacturing. Université de Lyon. HAL Archives, English. f NNT : 2017LYSEM022 , 2017 [Online]. Available: https://tel.archives-ouvertes.fr/tel-02878704/document
[10] Ju. Nduhura-Munga, G. Rodriguez-Verjan, S. Dauzere-Peres, C. Yugma, Ph. Vialletelle, J. Pinaton. “A literature review on sampling techniques in semiconductor manufacturing”. IEEE Trans. on Semicond. Manufact., Vol. 26, Iss.2, pp.88–195, 2013.
https://doi.org/10.1109/TSM.2013.2256943
[11] Ju. Nduhura-Munga. Implementing and optimizing dynamic control plans in semiconductor manufact., PhD thesis, Ecole Nat. Supérieure des Mines de Saint-Etienne, Gardanne, France, 2012.
[12] 3D-vision on Windows 10. NDIVIA. [Online]. Available: https://www.nvidia.com/en-us/geforce/forums/3dvision/41/286802/3d-vision...
[13] PCE Instruments. [Online]. Available: Defectoscope PCE-FD 20. https://www.pce-instruments.com/english/ measuring-instruments/test-meters/defectoscopekat_162404.htm.
[14] M.-G. Shin, J.—H. Lee, “An Auto Metrology Sampling Method Considering Quality and Productivity for Semiconductor Manufacturing Process”, Trans. of The Korean Inst. of Electr. Eng., Vol.61, Is.9, pp.1330-1335, 2012 [Online]. Available: http://www.koreascience.or.kr/article/JAKO201225067516719.page.
[15] K. Wu, Modeling for Semiconductor Industry Dynamics, Mass.Inst. of Techn., 2008. [Online]. Available: https://studylib.net/doc/ 11277284/modeling--the-- semiconductor--industry-dy-kailiang--wu.
[16] P. Espadinha-Cruz, R.Godina, E.M.G.Rodrigues. A Review of Data Mining Applications in Semiconductor Manufacturing, Processes, 9, 305, 38 p.,. 2021. [Online]. Available: https://doi.org/10.3390/pr9020305 https://www.mdpi. com/jour.
[17] G. Verjan, “Smart Sampling for Risk Reduction in Semicinductor Manufacturing”, HAL Archives, [Online]. Available: https://tel.archives-ouvertes.fr/tel-01126975.
[18] Ya. Kaga, Yo. Sato, Ya. Yamada, Yu. Yamazaki, M. Aoki, R. Harukawa, E. Chang, “Integrated defect sampling method by using design attribute for high sensitivity inspection in 45nm production environment”, In Semiconductor Manufacturing, 2008 Int. Symp., pp.379–381. IEEE, 2008.
[19] A. Lima, V. Borodin, S. Dauzère-Pérès, P. Vialletelle, “A sampling-based approach for managing lot release in time constraint tunnels in semiconductor manufacturing”, Int. Journ. of Prod. Res., Vol.59, Iss.3, pp.860-884, 2021. [Online]. Available: https://scholar.google.fr/citations?view_ op=view_citation&hl=fr&user=T7mDFAEAAAA.
[20] S. Housseman, S. Dauzère-Pérès, G. RodriguezVerjan, J. Pinaton, “Smart dynamic sampling for wafer at risk reduction in semiconductor manufacturing”, In Aut. Sc. and Eng. (CASE), 2014 IEEE Int. Conf., pp.780–785. IEEE, 2014.
a. P. Vialletelle, S. Dauzère-pérès, C. Yugma, J. Pinaton, “A Smart Sampling Scheduling and Skipping Simulator and its evaluation on real data sets”, in Proc. 2011 Winter Simulation Conf. (WSC), 2011 [Online]. Available: https://www.academia.edu/17594430/A_Smart_Sampling_Sched uling_and_Skipping_Simu-lator_and_its_evaluation _on_real_data_sets
[21] Vision and Learning Lab., Seoul National University, 2021 [Online]. Available: https://cse.snu.ac.kr/en/lab/ vision-and-learning-lab