Sediments can act as pollutant sink as well as source of secondary contamination in aquatic ecosystems. The pollution characteristics of eight heavy metals in the sediments of Ikwu River, Umuahia were investigated using eight assessment indices. The study was carried out between January and June 2022 in three stations. Results showed that cadmium exceeded permissible limit, copper exceeded limit only in February 2022 while others were within limits. The values in Stations 2 and 3 were slightly higher, attributed to localized anthropogenic influence; though other human activities in the watershed especially agriculture were not ruled out in the area. Different levels of heavy metal pollution were observed in the sediments as indicated by the indices but Cd was the principal pollutant. The indices indicated the following - Contamination Factor: Zn and Cu (moderate) and Cd (very high), Degree of Contamination (very high), Ecological Risk: Cd (high) and Cu (considerable), Potential Ecological Risk (high), Pollution Load Index (>1), Enrichment Factor: Zn and Cu (moderate) and Cd (extremely high), Geo-accumulation Index: Cd (very highly polluted) and Quantification of Contamination: Cd and Cu (anthropogenic). The sediments were polluted with toxic metals that may be detrimental to humans and aquatic biota.
1. Abdullah, M.I.C., Sah, A.S.R.M., & Haris, H. (2020). Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. Tropical Life Science Research, 31(3), 109-125. doi: https://dx.doi.org/10.21315/tlsr2020.31.3.8
https://doi.org/10.21315/tlsr2020.31.3.8
2. Ahirvar, B.P., Das, P., Srivastava, V., & Kumar, M. (2023). Perspectives of heavy metal pollution indices for soil, sediment, and water pollution evaluation: An insight. Total Environment Research Themes, 6, 100039. doi: https://doi.org/10.1016/j.totert.2023.100039
https://doi.org/10.1016/j.totert.2023.100039
3. Akintade, O.O., Ogunleye, G.E., Oderinde, R., Ogbesejana, A., & Agbaje, W.B. (2022). Heavy Metals Pollution Assessment of Asa River Sediments in Ilorin, Kwara State, Nigeria. American Journal of Applied and Industrial Chemistry. 6(1), 20-30. doi: https://doi.org/10.11648/j.ajaic.20220601.14
https://doi.org/10.5455/sf.119452
4. Ali, M.M., Ali, M.L., Islam, M.S., & Rahman, M.Z. (2016). Preliminary Assessment of Heavy Metals in Water and Sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring and Management, 5, 27–35. doi: https://doi.org/10.1016/j.enmm.2016.01.002
https://doi.org/10.1016/j.enmm.2016.01.002
5. Ali, W., & Muhammad, S. (2023). Spatial distribution, eco‑environmental risks, and source characterization of heavy metals using compositional data analysis in riverine sediments of a Himalayan river, Northern Pakistan. Journal of Soils and Sediments, 2023. doi: https://doi.org/10.1007/s11368-023-03484-0
https://doi.org/10.1007/s11368-023-03484-0
6. Amin, S., Muhammad, S., & Fatima, H., 2021. Evaluation and risk assessment of potentially toxic elements in water and sediment of the Dor River and its tributaries. North Pakistan. Environmental Technology & Innovation, 21, 101333. doi: https://doi.org/10.1016/j.eti.2020.101333
https://doi.org/10.1016/j.eti.2020.101333
7. Amodu, O.A., Imaji, M., & Ichado A.S.P. (2021). Assessment of Heavy Metal Concentrations in Water and Sediments of Evbuarhue River in Ikpoba Okha Local Government Area of Edo State, Nigeria. International Journal of Academic Multidisciplinary Research, 5(6), 231-239
8. Anyanwu, E.D., Adetunji, O.G., & Nwoke, O.B. (2022a). Heavy Metal Content of Water in Ikwu River (Umuahia, Nigeria): Pollution Indices and Health Risk Assessment Approach. Acta Aquatica Turcica, 18(3), 345-358. doi: https://doi.org/10.22392/actaquatr.1060806
https://doi.org/10.22392/actaquatr.1060806
9. Anyanwu, E.D., Jonah, U.E., Adetunji, O.G., & Nwoke, O. B. (2022b). An appraisal of the physicochemical parameters of Ikwu River, Umuahia, Abia State in South‑eastern, Nigeria for multiple uses. International Journal of Energy and Water Resources, 2022. doi: https://doi.org/10.1007/s42108-021-00168-8
https://doi.org/10.1007/s42108-021-00168-8
10. Audu, Y., Aliyu, A.D., & John Dadi-Mamud, N. (2022). Evaluation of heavy metals contamination in the sediments of some selected water of south senatorial district of Niger State, Nigeria. Science World Journal, 17(4), 487 – 494.
11. Barakat, A., Ennaji, W., Krimissa, S., & Bouzaid, M. (2020). Heavy metal contamination and ecological-health risk evaluation in peri-urban wastewater-irrigated soils of Beni-Mellal city (Morocco). International Journal of Environmental Health Research, 30(4), 372–387. doi: https://doi.org/10.1080/09603123.2019.1595540
https://doi.org/10.1080/09603123.2019.1595540
12. Calmuc, V.A., Calmuc, M., Arseni, M., Topa, C.M., Timofti, M., Burada, A., Iticescu, C., & Georgescu, L.P. (2021). Assessment of Heavy Metal Pollution Levels in Sediments and of Ecological Risk by Quality Indices, Applying a Case Study: The Lower Danube River, Romania. Water, 13, 1801. doi: https://doi.org/10.3390/w13131801
https://doi.org/10.3390/w13131801
13. CCME (2002). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment. https://ccme.ca/en/summary-table
14. Cevik, F. Göksu, M.Z. Derici, O.B., & Fındık, O. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152, 309–317.
https://doi.org/10.1007/s10661-008-0317-3
15. Chinemelu, E.S., & Okumoko, D.P. (2022). Assessment of Temporal Variation of Heavy Metals in Sediments of Warri River, Southwestern Nigeria. Geological Behaviour, 6(2), 68-75.
https://doi.org/10.26480/gbr.02.2022.68.75
16. Chris, D.I., & Anyanwu, B.O. (2023). Pollution and Potential Ecological Risk Evaluation Associated with Toxic Metals in an Impacted Mangrove Swamp in Niger Delta, Nigeria. Toxics, 11, 6. doi: https:// doi.org/10.3390/toxics11010006
https://doi.org/10.3390/toxics11010006
17. Cui, S., Zhang, F., Hu, P., Hough, R., Fu, Q., Zhang, Z., An, L., Li, Y-F., Li, K., Liu, D., & Chen, P. (2019). Heavy Metals in Sediment from the Urban and Rural Rivers in Harbin City, Northeast China. International Journal of Environmental Research and Public Health, 16, 4313. doi: https:// doi.org/10.3390/ijerph16224313
https://doi.org/10.3390/ijerph16224313
18. Davies, I.C., Odekina, U. M. and Akoko S. (2022). Distribution of trace metals in biota, sediments, and water from a polluted mangrove swamp in Rivers State. Journal of Geography, Environment and Earth Science International, 26(4), 1-14.
https://doi.org/10.9734/jgeesi/2022/v26i430343
19. Edori, O.S., & Kpee, F. (2017). Assessment Models for Heavy Metal Pollution in Soils within Selected Abattoirs in Port Harcourt, Rivers State, Nigeria. Singapore Journal of Applied Research, 7(1), 9-15.
https://doi.org/10.3923/sjsres.2017.9.15
20. Essien, J.P., Inam, E.D., Ikpe, D.I., Udofia, G.E., & Benson, N.U. (2019). Ecotoxicological status and risk assessment of heavy metals in municipal solid wastes dumpsite impacted soil in Nigeria. Environmental Nanotechnology, Monitoring & Management, 11, 100215. doi: https://doi.org/10.1016/j.enmm.2019.100215
https://doi.org/10.1016/j.enmm.2019.100215
21. Etesin, U., Udoinyang, E., & Harry, T. (2013). Seasonal variation of physicochemical parameters of water and sediments from Iko River, Nigeria. Journal of Environment and Earth Science, 3(8), 96–110.
22. Ghrefat, H., Abu-Rukah, Y., & Rosen M. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain dam, Jordan. Environmental Monitoring and Assessment, 178, 95–109.
https://doi.org/10.1007/s10661-010-1675-1
23. Guan, Y., Shao, C., & Ju, M. (2014). Heavy metal contamination assessment and partition for industrial and mining gathering areas. International Journal of Environmental Research and Public Health, 11(7), 7286-7303.
https://doi.org/10.3390/ijerph110707286
24. Habib, J., Sadigheh, J., & Mohammad, A.K. (2018). Assessment of heavy metal pollution and ecological risk in marine sediments (A case study: Persian Gulf). Human and Ecological Risk Assessment, 24(8), 1–10. doi: https://dx.doi.org/10.1080/10807039.2018.1443792.
https://doi.org/10.1080/10807039.2018.1443792
25. Hakanson, L. (1980). An Ecological Risk Index for Aquatic Pollution Control a Sedimentological Approach. Water Research, 14, 975-1001. doi: http://dx.doi.org/10.1016/0043-1354(80)90143-8
https://doi.org/10.1016/0043-1354(80)90143-8
26. Haque, M.A., Jewel, M.A., Hasan, J., Islam, M.M., Ahmed, S., & Alam, L. (2019). Seasonal variation and ecological risk assessment of heavy metal contamination in surface waters of the Ganges River (Northwestern Bangladesh). Malaysian Journal of Analytical Science, 23(2), 300-311.
https://doi.org/10.17576/mjas-2019-2302-14
27. Harikumar, P.S., & Jisha, T.S. (2010). Distribution Pattern of Trace Metal Pollutants in the Sediments of an Urban Wetland in the Southwest Coast of India. International Journal of Engineering science and Technology, 2(5), 840 – 850.
28. Huang, Z., Zhao, W., Xu, T., Zheng, B., & Yin, D. (2019). Occurrence and distribution of antibiotic resistance genes in the water and sediments of Qingcaosha Reservoir, Shanghai. China. Environmental Science Europe, 31, 1–9.
https://doi.org/10.1186/s12302-019-0265-2
29. Ibezim-Ezeani, M.U. and Owhonda, C.I. (2021). Spatial Distribution and Pollution Assessment of Some Metals in Intertidal Sediment of Sambreiro River in Rivers State, Nigeria. IOSR Journal of Environmental Science, Toxicology and Food Technology, 15(1 S. II), 13-24.
30. Islam, M.S., Han, S., Ahmed, M.K., & Masunaga, S. (2014). Assessment of Trace Metal Contamination in Water and Sediment of Some Rivers in Bangladesh. Journal of Water and Environment Technology, 12 (2), 109–121. doi: https://doi.org/10.2965/jwet.2014.109
https://doi.org/10.2965/jwet.2014.109
31. Ismail, A., & Naji A. (2011). Assessment of metals contamination in Klang river surface sediments by using different indexes. Environment Asia, 4, 30–38.
32. Jacob, J.M., Karthik, C., Saratale, R.G., Kumar, S.S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of Environmental Management, 217, 56–70. doi: https://doi.org/10.1016/j.jenvman.2018.03.077
https://doi.org/10.1016/j.jenvman.2018.03.077
33. Jahan, S., & Strezov, V. (2018). Comparison of pollution indices for the assessment of heavy metals in the sediments of seaports of NSW, Australia. Marine Pollution Bulletin, 128, 295–306. doi: https://dx.doi.org/10.1016/j.marpolbul.2018.01.036
https://doi.org/10.1016/j.marpolbul.2018.01.036
34. Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473–481.
https://doi.org/10.1016/j.chemosphere.2017.02.029
35. Kieri, I.B.S., Ekpete, O.A., & Edori, O.S. (2021). Assessment of Heavy Metal Pollution in Sediments of Silver River, Southern Ijaw, Bayelsa State, Nigeria. Environmental Analysis & Ecology Studies, 7(5), 000675. doi: https://doi.org/10.31031/EAES.2021.07.000675
https://doi.org/10.31031/EAES.2021.07.000675
36. Kumar, V., Sharma, A., Pandita, S., Bhardwaj, R., Thukral, A.K. and Cerda, A. (2020). A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. International Journal of Sediment Research, 2020. doi: https://doi.org/10.1016/j.ijsrc.2020.03.012
https://doi.org/10.1016/j.ijsrc.2020.03.012
37. Li, F., Yu, X., Lv, J., Wu, Q., & An, Y. (2022). Assessment of heavy metal pollution in surface sediments of the Chishui River Basin, China. PLoS One, 17(2), 0260901. doi: https://doi.org/10.1371/journal.pone.0260901
https://doi.org/10.1371/journal.pone.0260901
38. Liang, A., Wang, Y., Guo, H., Bo, L., Zhang, S., & Bai, Y. (2015). Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir. Environmental Science and Pollution Research, 22, 16067–16076
https://doi.org/10.1007/s11356-015-4825-8
39. Ling, T-Y., Soo, C-L., Liew, J-J, Nyanti, L., Sim, S-F., & Grinang, J. (2017a). Influence of Rainfall on the Physicochemical Characteristics of a Tropical River in Sarawak, Malaysia. Polish Journal of Environmental Studies, 26(5), 2053-2065. doi: https://doi.org/10.15244/pjoes/69439
https://doi.org/10.15244/pjoes/69439
40. Liu, M., Zhong, J., Zheng, X., Yu, J., Liu, D., & Fan, C. (2018). Fraction distribution and leaching behavior of heavy metals in dredged sediment disposal sites around Meiliang Bay, Lake Taihu (China). Environmental Science and Pollution Research, 25, 9737–9744
https://doi.org/10.1007/s11356-018-1249-2
41. Malvandi, H. (2021). An Assessment of Metal Contamination Risk in Sediments of the Mohammad Abad River, Northern Iran. Journal of Biomedical Research and Environmental Sciences, 2(8), 696-704. doi: https://dx.doi.org/10.37871/jbres1299
https://doi.org/10.37871/jbres1299
42. Masindi, V., & Muedi, K.L. (2018). Environmental contamination by heavy metals. Heavy metals, 10, 115-132.
https://doi.org/10.5772/intechopen.76082
43. Mohajane, C., & Manjoro, M. (2022). Sediment-associated heavy metal contamination and potential ecological risk along an urban river in South Africa. Heliyon, 8, e12499. doi: https://doi.org/10.1016/j.heliyon.2022.e12499
https://doi.org/10.1016/j.heliyon.2022.e12499
44. Moldovan, A., Torok, A.I., Kovacs, E., Cadar, O., Mirea, C.I., & Micle, V. (2022). Metal Contents and Pollution Indices Assessment of Surface Water, Soil and Sediment from the Aries River Basin Mining Area. Romania. Sustainability, 14, 824. doi: https://doi.org/10.3390/su14138024
https://doi.org/10.3390/su14138024
45. Moslen, M., Ekweozor, I.K.E., & Nwoka, N.D. (2018). Assessment of heavy metals pollution in surface sediments of a tidal creek in the Niger Delta, Nigeria. Archives of Agriculture and Environmental Science, 3(1), 81-85 doi: https://doi.org/10.26832/24566632.2018.0301012
https://doi.org/10.26832/24566632.2018.0301012
46. Mugoša, B., Đurović, D., Nedović-Vuković, M., Barjaktarović-Labović, S., & Vrvić, M. (2016). Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro. International Journal of Environmental Research and Public Health, 13(4), 393. doi: https://doi.org/10.3390/ijerph13040393
https://doi.org/10.3390/ijerph13040393
47. Muhammad, S., Ullah, S., Ali, W., Jadoon, I.A.K., & Arif, M. (2022). Spatial distribution of heavy metal and risk indices of water and sediments in the Kunhar River and its tributaries. Geocarto International, 37 (20), 5985-6003. doi: https://doi.org/10.1080/10106049.2021.1926557
https://doi.org/10.1080/10106049.2021.1926557
48. Muller, G. (1969). Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal, 2, 108-118.
49. Mwakisunga, B., Pratap, H.B., Machiwa, J.F., & Stephano, F. (2021). Heavy Metal Contamination and Potential Ecological Risks in Surface Sediments along Dar es Salaam Harbour Channel. Tanzania Journal of Science, 47(5), 1606-1621. doi: https://dx.doi.org/10.4314/tjs.v47i5.11
https://doi.org/10.4314/tjs.v47i5.11
50. Nowrouzi, M., & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chemical Speciation and Bioavailability, 26(2), 99–105. doi: https://dx.doi.org/10.3184/095422914X13951584546986
https://doi.org/10.3184/095422914X13951584546986
51. Nwazue, E.U., Omietimi, E.J., Mienye, E., Imarhiagbe, O.J., Adeosun, O.A., & Nnabo, P.N. (2022). Heavy Metal Dispersion in Stream Sediments in River Iyiudene, Abakaliki South-Eastern Nigeria: Source, Distribution Pattern, and Contamination Assessment. Journal of Geoscience and Environment Protection, 10, 48-69. doi: https://doi.org/10.4236/gep.2022.107004
https://doi.org/10.4236/gep.2022.107004
52. Odekina, M.U., Davies, I.C., Akoko, S., & Vincent-Akpu I. F. (2021). Bioaccumulation of Heavy Metals in Periophthalmus papillio, Sediment and Interstitial Water from Isaka-Bundu Water Front in Rivers State. Academic Journal of Current Research, 8(11), 19-38.
53. Offor, C.C. and Okerulu, I.O. (2019). Assessment of heavy metals contamination in sediment of Obii Stream, Ufuma, Anambra State, Nigeria. Journal of Basic Physical Research, 9(2), 43 – 53.
54. Ogbeibu, A.E., Omoigberale, M.O. Ezenwa, I.M., Eziza, J.O. and Igwe, J.O. (2014). Using Pollution Load Index and Geoaccumulation Index for the Assessment of Heavy Metal Pollution and Sediment Quality of the Benin River, Nigeria. Natural Environment, 2(1), 1-9. doi: https://doi.org/10.12966/ne.05.01.2014
https://doi.org/10.12966/ne.05.01.2014
55. Olutona, G.A. (2023). Health Risk Assessment of Heavy Metals in Sediment of Tropical Freshwater Stream. Journal of Nigerian Society of Physical Sciences, 5, 983. doi: https://doi.org/10.46481/jnsps.2023.983
https://doi.org/10.46481/jnsps.2023.983
56. Orisakwe, O.E. (2014). Lead and cadmium in public health in Nigeria: physicians neglect and pitfall in patient management. North American Journal of Medical Sciences, 6(2), 61-70.
https://doi.org/10.4103/1947-2714.127740
57. Pandiyan, J., Mahboob, S., Govindarajan, M., Al-Ghanim, K.A., Ahmed, Z., Al-Mulhm, N., Jagadheesan, R., & Krishnappa, K. (2021). An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security. Saudi Journal of Biological Sciences, 28, 1218–1225. doi: https://doi.org/10.1016/j.sjbs.2020.11.072
https://doi.org/10.1016/j.sjbs.2020.11.072
58. Pejman, A., Bidhendi, G.N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators, 58, 365–373.
https://doi.org/10.1016/j.ecolind.2015.06.012
59. Peter, P.O., Rashid, A., Nkinahamira, F., Wang, H., Sun, Q., Gad, M., Yu, C.-P., & Hu, A. (2021). Integrated assessment of major and trace elements in surface and core sediments from an urban lagoon, China: Potential ecological risks and influencing factors. Marine Pollution Bulletin, 170, 112651. doi: https://doi.org/10.1016/j.marpolbul.2021.112651
https://doi.org/10.1016/j.marpolbul.2021.112651
60. Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculation pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 3(19): 230–241.
https://doi.org/10.1016/S1002-0705(08)60042-4
61. Ramos, T.B., Gonçalves, M.C., Branco, M.A., Brito, D., Rodrigues, S., Sánchez-Pérez, J.M., Sauvage, S., Prazeres, Â., Martins, J.C., Fernandes, M.L., & Pires F.P. (2015). Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal. Catena, 127, 177-190. doi: https://doi.org/10.1016/j.catena.2015.01.001
https://doi.org/10.1016/j.catena.2015.01.001
62. Shirani, M., Afzali, K.N., Jahan, S., Strezov, V., & Soleimani-Sardo, M. (2020). Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast Iran. Scientific Report, 10, 4775. doi: https://doi.org/10.1038/s41598-020-61838-x
https://doi.org/10.1038/s41598-020-61838-x
63. Shyleshchandran, M.N., Mohan, M., & Ramasamy, E.V. (2018) Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach. Environmental Science and Pollution Research, 25, 7333–7345.
https://doi.org/10.1007/s11356-017-0997-8
64. Singh, M., Müller, G., & Singh, I.B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga plain, India. Water, Air, and Soil Pollution, 141, 35–54.
https://doi.org/10.1023/A:1021339917643
65. Tomlinson, D.L., Wilson, J.G., Harris, C.R. and Jeffrey, D.W. (1980) Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresuntersuchungen, 33, 566-575. doi: http://dx.doi.org/10.1007/BF02414780
https://doi.org/10.1007/BF02414780
66. Usman, Q.A., Muhammed, S., Ali, W., Yousaf, S., & Jadoon, I.A.K. (2021). Spatial distribution and provenance of heavy metal contamination in the sediments of the Indus River and its tributaries, North Pakistan: Evaluation of pollution and potential risks. Environmental Technology & Innovation, 21, 101184. doi: https://doi.org/10.1016/j.eti.2020.101184
https://doi.org/10.1016/j.eti.2020.101184
67. Wang, W., Qin, Y., Song, D., & Wang, K. (2008). Column leaching of coal and its combustion residues, Shizuishan, China. International Journal of Coal Geology, 75, 81–87.
https://doi.org/10.1016/j.coal.2008.02.004
68. Wei, J., Duan, M., Li, Y., Nwankwegu, A.S., Ji, Y., & Zhang, J. (2019). Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin. China. Scientific Report, 9, 13100. doi: https://doi.org/10.1038/s41598-019-49724-7
https://doi.org/10.1038/s41598-019-49724-7
69. Zarei, I., Pourkhabbaz, A., & Khuzestani, R.B. (2014). An assessment of metal contamination risk in sediments of Hara Biosphere Reserve, southern Iran with a focus on application of pollution indicators. Environmental Monitoring and Assessment, 186(10), 6047-60. doi: https://doi.org/10.1007/ s10661-014-3839-x
https://doi.org/10.1007/s10661-014-3839-x
70. Zarezadeh, R., Rezaee, P., Lak, R., Masoodi, M., & Ghorbani, M. (2017). Distribution and Accumulation of Heavy Metals in Sediments of the Northern Part of Mangrove in Hara Biosphere Reserve, Qeshm Island (Persian Gulf). Soil & Water Research, 12(2), 86–95. doi: https://doi.org/10.17221/16/2016-SWR