An Insightful Approach to Understanding the Mechanism of Amino Acid Adsorption on Inorganic Surfaces: Glycine on Silica

2023;
: pp. 253 - 262
1
Department of Chemistry, University of Colombo
2
Department of Chemistry, University of Colombo

The adsorption of glycine on amorphous silica surface has been studied to demonstrate the catalytic activity of silica surfaces towards the formation of peptide bonds on prebiotic earth. Silica nanoparticles were synthesized using a microwave assisted method and the nanoparticles were characterized using SEM. Glycine was adsorbed from aqueous solution on the nanoparticles and the adsorption behavior was characterized using FTIR and TGA analyses. At a glycine concentration of 0.5M and at pH=7, favorable adsorption was observed which obeyed the Langmuir isotherm model. From the FTIR characterization, peptide bond formation was confirmed. It was concluded that the adsorption of glycine occurs via electrostatic interactions as well as hydrogen bonding between the silica surface and glycine molecules.

  1. Guo, C.; Holland, G.P. Investigating Lysine Adsorption on Fumed Silica Nanoparticles. J. Phys. Chem. C 2014, 118, 25792-25801. https://doi.org/10.1021/jp508627h
  2. Pászti, Z.; Keszthelyi, T.; Hakkel, O.; Guczi, L. Adsorption of Amino Acids on Hydrophilic Surfaces. J. Phys. Condens. Matter 2008, 20, 22. https://doi.org/10.1088/0953-8984/20/22/224014
  3. Bhakta, S.A.; Evans, E.; Benavidez, T.E.; Garcia, C.D. Protein Adsorption onto Nanomaterials for the Development of Biosensors and Analytical Devices: A Review. Anal. Chim. Acta 2015, 872, 7-25. https://doi.org/10.1016%2Fj.aca.2014.10.031
  4. Kitadai, N.; Yokoyama, T.; Nakashima, S. ATR-IR Spectroscopic Study of L-Lysine Adsorption on Amorphous Silica. J. Colloid Interface Sci. 2009, 329, 31-37. http://dx.doi.org/10.1016/j.jcis.2008.09.072
  5. Song W.; Mano, J.F. Interactions between Cells or Proteins and Surfaces Exhibiting Extreme Wettabilities. Soft Matter 2013, 9, 2985-2999. http://dx.doi.org/10.1039/C3SM27739A
  6. Zhu, C.; Wang, Q.; Huang, X.; Yun, J.; Hu, Q.; Yang, G. Adsorption of Amino Acids at Clay Surfaces and Implication for Biochemical Reactions: Role and Impact of Surface Charges. Colloids Surf. B 2019, 183, 110458. http://dx.doi.org/10.1016/j.colsurfb.2019.110458
  7. Kim, J.-H.; Yoon, J.-Y. Protein Adsorption on Polymer Particles. In Encyclopedia of Surface and Colloid Science; Hubbard, A.T., Ed.; CRC Press, 2002; pp 4373-4381.
  8. Vlasova N.N.; Golovkova, L.P. The Adsorption of Amino Acids on the Surface of Highly Dispersed Silica. Colloid J. 2004, 66, 657-662. http://dx.doi.org/10.1007/s10595-005-0042-3
  9. Nagendra Prasad, Y.; Ramanathan, S. Role of Amino-Acid Adsorption on Silica and Silicon Nitride Surfaces During STI CMP. Electrochem. Solid-State Lett. 2006, 9, 337-339. https://doi.org/10.1149/1.2351957
  10. Nakanishi, K.; Sakiyama, T.; Imamura, K. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. J. Biosci. Bioeng. 2001, 91, 233-244. https://doi.org/10.1016/S1389-1723(01)80127-4
  11. Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7, 72-77. https://doi.org/10.1016%2Fs0958-1669(96)80098-x
  12. Cleaves, H.J. Prebiotic Chemistry: What We Know, What We Don't. Evol.: Educ. Outreach 2012, 5, 342-360. https://doi.org/10.1007/s12052-012-0443-9
  13. Bujdák, J.; Rode, B.M. Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst. Orig. Life Evol. Biosph. 1999, 29, 451-461.
  14. Lomenech, C.; Bery, G.; Costa, D.; Stievano, L.; Lambert, J.-F. Theoretical and Experimental Study of the Adsorption of Neutral Glycine on Silica from the Gas Phase. ChemPhysChem 2005, 6, 1061-1070. http://dx.doi.org/10.1002/cphc.200400608
  15. Martra, G.; Deiana, Ch.; Sakhno, Yu.; Barberis, I.; Fabbiani, M.; Pazzi, M.; Vincenti, M. The Formation and Self-Assembly of Long Prebiotic Oligomers Produced by the Condensation of Unactivated Amino Acids on Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 4671-4674. https://doi.org/10.1002/anie.201311089
  16. Stievano, L.; Piao, L.Yu.; Lopes, I.; Meng, M.; Costa, D.; Lambert, J.-F. Glycine and Lysine Adsorption and Reactivity on the Surface of Amorphous Silica. Eur. J. Mineral. 2007, 19, 321-331. https://doi.org/10.1127/0935-1221/2007/0019-1731
  17. Bujdák, J.; Rode, B.M. Glycine Oligomerization on Silica and Alumina. React. Kinet. Catal. Lett. 1997, 62, 281-286. https://doi.org/10.1007/BF02475464
  18. Rimola, A.; Fabbiani, M.; Sodupe, M.; Ugliengo, P.; Martra, G. How Does Silica Catalyze the Amide Bond Formation under Dry Conditions? Role of Specific Surface Silanol Pairs. ACS Catal. 2018, 8, 4558-4568. https://doi.org/10.1021/acscatal.7b03961
  19. Lambert, J.F.; Jaber, M.; Georgelin, T.; Stievano, L. A Comparative Study of the Catalysis of Peptide Bond Formation by Oxide Surfaces. Phys. Chem. Chem. Phys. 2013, 15, 13371-13380. https://doi.org/10.1039/C3CP51282G
  20. Rimola, A.; Tosoni, S.; Sodupe, M.; Ugliengo, P. Does Silica Surface Catalyse Peptide Bond Formation? New Insights from First-Principles Calculations. ChemPhysChem 2006, 7, 157-163. https://doi.org/10.1002/cphc.200500401
  21. Emami, F.S.; Puddu, V.; Berry, R.J.; Varshney, V.; Patwardhan, S.V.; Perry, C.C.; Heinz, H. Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size. Chem. Mater. 2014, 26, 5725-5734. https://doi.org/10.1021/cm5026987
  22. Heinz, H.; Ramezani-Dakhel, H. Simulations of Inorganic-Bioorganic Interfaces to Discover New Materials: Insights, Comparisons to Experiment, Challenges, and Opportunities. Chem. Soc. Rev. 2016, 45, 412-448. https://doi.org/10.1039/C5CS00890E
  23. Feifel, S.C.; Lisdat, F. Silica Nanoparticles for the Layer-by-Layer Assembly of Fully Electro-Active Cytochrome c Multilayers. J. Nanobiotechnology 2011, 9, 59, 2011. https://doi.org/10.1186/1477-3155-9-59
  24. Barros, C.H.N.; Fulaz, S.; Vitale, S.; Casey, E.; Quinn, L. Interactions between Functionalised Silica Nanoparticles and Pseudomonas fluorescens Biofilm Matrix: A Focus on the Protein Corona. PLoS One 2020, 15, 1-15. https://doi.org/10.1371/journal.pone.0236441
  25. Care, A.; Bergquist, P.L.; Sunna, A. Solid-Binding Peptides: Smart Tools for Nanobiotechnology. Trends Biotechnol. 2015, 33, 259-268. https://doi.org/10.1016/j.tibtech.2015.02.005
  26. Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40-47.
  27. Slowing, I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012
  28. Kamarudin, N.H.N.; Jalil, A.A.; Triwahyono, S.; Timmiati, S.N. Microwave-Assisted Synthesis of Mesoporous Silica Nanoparticles as a Drug Delivery Vehicle. Malaysian J. Anal. Sci. 2016, 20, 1382-1389.
  29. Singho, N.D.; Johan, M.R. Complex Impedance Spectroscopy Study of Silica Nanoparticles Via Sol-Gel Method. Int. J. Electrochem. Sci. 2012, 7, 5604-5615.
  30. Beganskiene, V.; Sirutkaitis, M.; Kurtinaitiene, M.; Juskenas, R.; Kareiva, A. FTIR, TEM and NMR Investigations of Stöber Silica Nanoparticles. Mater. Sci. (Medziagotyra) 2004, 10, 287-290.
  31. Yang, Q.; Gong, X.; Song, T.; Yang, J.; Zhu, S.; Li, Y.; Cui, Y.; Li, Y.; Zhang, B.; Chang, J. Quantum dot-Based Immunochromatography Test Strip for Rapid, Quantitative and Sensitive Detection of Alpha Fetoprotein. Biosens. Bioelectron. 2011, 30, 145-150. https://doi.org/10.1016/j.bios.2011.09.002
  32. Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.F.; Ugliengo, P. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev. 2013, 113, 4216-4313. https://doi.org/10.1021/cr3003054
  33. Rimola, A.; Sodupe, M.; Ugliengo, P. Amide and Peptide Bond Formation: Interplay between Strained Ring Defects and Silanol Groups at Amorphous Silica Surfaces. J. Phys. Chem. C 2016, 120, 24817-24826. https://doi.org/10.1021/acs.jpcc.6b07945
  34. Hassanali, A.; Zhang, H.; Knight, C.; Shin, Y.K.; Singer, S.J. The Dissociated Amorphous Silica Surface: Model Development and Evaluation. J. Chem. Theory Comput. 2010, 6, 3456-3471. https://doi.org/10.1021/ct100260z