Комплексний підхід до розуміння механізму адсорбції амінокислот на неорганічних поверхнях: гліцин на кремнеземі

2023;
: cc. 253 - 262
1
Department of Chemistry, University of Colombo
2
Department of Chemistry, University of Colombo

Досліджено адсорбцію гліцину на поверхні аморфного кремнезему з метою показати каталітичну активність поверхонь кремнезему щодо утворення пептидних зв’язків на пребіотичній землі. Наночастинки кремнезему були син-тезовані за допомогою мікрохвильового методу й охарак-теризовані СЕМ. Гліцин з водного розчину адсорбували на одержаних наночастинках, а адсорбційну поведінку характеризували за допомогою аналізів FTIR і ТГА. За концентрації гліцину 0,5 М і за pH=7 спостерігалася сприятлива адсорбція, яка підпорядковувалася моделі ізотерми Ленгмюра. Утворення пептидного зв’язку підтверджено FTIR аналізом. Зроблено висновок, що адсорбція гліцину відбувається через електростатичну взаємодію та утворення водневих зв’язків між поверхнею кремнезему і молекулами гліцину.

  1. Guo, C.; Holland, G.P. Investigating Lysine Adsorption on Fumed Silica Nanoparticles. J. Phys. Chem. C 2014, 118, 25792-25801. https://doi.org/10.1021/jp508627h
  2. Pászti, Z.; Keszthelyi, T.; Hakkel, O.; Guczi, L. Adsorption of Amino Acids on Hydrophilic Surfaces. J. Phys. Condens. Matter 2008, 20, 22. https://doi.org/10.1088/0953-8984/20/22/224014
  3. Bhakta, S.A.; Evans, E.; Benavidez, T.E.; Garcia, C.D. Protein Adsorption onto Nanomaterials for the Development of Biosensors and Analytical Devices: A Review. Anal. Chim. Acta 2015, 872, 7-25. https://doi.org/10.1016%2Fj.aca.2014.10.031
  4. Kitadai, N.; Yokoyama, T.; Nakashima, S. ATR-IR Spectroscopic Study of L-Lysine Adsorption on Amorphous Silica. J. Colloid Interface Sci. 2009, 329, 31-37. http://dx.doi.org/10.1016/j.jcis.2008.09.072
  5. Song W.; Mano, J.F. Interactions between Cells or Proteins and Surfaces Exhibiting Extreme Wettabilities. Soft Matter 2013, 9, 2985-2999. http://dx.doi.org/10.1039/C3SM27739A
  6. Zhu, C.; Wang, Q.; Huang, X.; Yun, J.; Hu, Q.; Yang, G. Adsorption of Amino Acids at Clay Surfaces and Implication for Biochemical Reactions: Role and Impact of Surface Charges. Colloids Surf. B 2019, 183, 110458. http://dx.doi.org/10.1016/j.colsurfb.2019.110458
  7. Kim, J.-H.; Yoon, J.-Y. Protein Adsorption on Polymer Particles. In Encyclopedia of Surface and Colloid Science; Hubbard, A.T., Ed.; CRC Press, 2002; pp 4373-4381.
  8. Vlasova N.N.; Golovkova, L.P. The Adsorption of Amino Acids on the Surface of Highly Dispersed Silica. Colloid J. 2004, 66, 657-662. http://dx.doi.org/10.1007/s10595-005-0042-3
  9. Nagendra Prasad, Y.; Ramanathan, S. Role of Amino-Acid Adsorption on Silica and Silicon Nitride Surfaces During STI CMP. Electrochem. Solid-State Lett. 2006, 9, 337-339. https://doi.org/10.1149/1.2351957
  10. Nakanishi, K.; Sakiyama, T.; Imamura, K. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. J. Biosci. Bioeng. 2001, 91, 233-244. https://doi.org/10.1016/S1389-1723(01)80127-4
  11. Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7, 72-77. https://doi.org/10.1016%2Fs0958-1669(96)80098-x
  12. Cleaves, H.J. Prebiotic Chemistry: What We Know, What We Don't. Evol.: Educ. Outreach 2012, 5, 342-360. https://doi.org/10.1007/s12052-012-0443-9
  13. Bujdák, J.; Rode, B.M. Silica, Alumina and Clay Catalyzed Peptide Bond Formation: Enhanced Efficiency of Alumina Catalyst. Orig. Life Evol. Biosph. 1999, 29, 451-461.
  14. Lomenech, C.; Bery, G.; Costa, D.; Stievano, L.; Lambert, J.-F. Theoretical and Experimental Study of the Adsorption of Neutral Glycine on Silica from the Gas Phase. ChemPhysChem 2005, 6, 1061-1070. http://dx.doi.org/10.1002/cphc.200400608
  15. Martra, G.; Deiana, Ch.; Sakhno, Yu.; Barberis, I.; Fabbiani, M.; Pazzi, M.; Vincenti, M. The Formation and Self-Assembly of Long Prebiotic Oligomers Produced by the Condensation of Unactivated Amino Acids on Oxide Surfaces. Angew. Chem. Int. Ed. 2014, 53, 4671-4674. https://doi.org/10.1002/anie.201311089
  16. Stievano, L.; Piao, L.Yu.; Lopes, I.; Meng, M.; Costa, D.; Lambert, J.-F. Glycine and Lysine Adsorption and Reactivity on the Surface of Amorphous Silica. Eur. J. Mineral. 2007, 19, 321-331. https://doi.org/10.1127/0935-1221/2007/0019-1731
  17. Bujdák, J.; Rode, B.M. Glycine Oligomerization on Silica and Alumina. React. Kinet. Catal. Lett. 1997, 62, 281-286. https://doi.org/10.1007/BF02475464
  18. Rimola, A.; Fabbiani, M.; Sodupe, M.; Ugliengo, P.; Martra, G. How Does Silica Catalyze the Amide Bond Formation under Dry Conditions? Role of Specific Surface Silanol Pairs. ACS Catal. 2018, 8, 4558-4568. https://doi.org/10.1021/acscatal.7b03961
  19. Lambert, J.F.; Jaber, M.; Georgelin, T.; Stievano, L. A Comparative Study of the Catalysis of Peptide Bond Formation by Oxide Surfaces. Phys. Chem. Chem. Phys. 2013, 15, 13371-13380. https://doi.org/10.1039/C3CP51282G
  20. Rimola, A.; Tosoni, S.; Sodupe, M.; Ugliengo, P. Does Silica Surface Catalyse Peptide Bond Formation? New Insights from First-Principles Calculations. ChemPhysChem 2006, 7, 157-163. https://doi.org/10.1002/cphc.200500401
  21. Emami, F.S.; Puddu, V.; Berry, R.J.; Varshney, V.; Patwardhan, S.V.; Perry, C.C.; Heinz, H. Prediction of Specific Biomolecule Adsorption on Silica Surfaces as a Function of pH and Particle Size. Chem. Mater. 2014, 26, 5725-5734. https://doi.org/10.1021/cm5026987
  22. Heinz, H.; Ramezani-Dakhel, H. Simulations of Inorganic-Bioorganic Interfaces to Discover New Materials: Insights, Comparisons to Experiment, Challenges, and Opportunities. Chem. Soc. Rev. 2016, 45, 412-448. https://doi.org/10.1039/C5CS00890E
  23. Feifel, S.C.; Lisdat, F. Silica Nanoparticles for the Layer-by-Layer Assembly of Fully Electro-Active Cytochrome c Multilayers. J. Nanobiotechnology 2011, 9, 59, 2011. https://doi.org/10.1186/1477-3155-9-59
  24. Barros, C.H.N.; Fulaz, S.; Vitale, S.; Casey, E.; Quinn, L. Interactions between Functionalised Silica Nanoparticles and Pseudomonas fluorescens Biofilm Matrix: A Focus on the Protein Corona. PLoS One 2020, 15, 1-15. https://doi.org/10.1371/journal.pone.0236441
  25. Care, A.; Bergquist, P.L.; Sunna, A. Solid-Binding Peptides: Smart Tools for Nanobiotechnology. Trends Biotechnol. 2015, 33, 259-268. https://doi.org/10.1016/j.tibtech.2015.02.005
  26. Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40-47.
  27. Slowing, I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012
  28. Kamarudin, N.H.N.; Jalil, A.A.; Triwahyono, S.; Timmiati, S.N. Microwave-Assisted Synthesis of Mesoporous Silica Nanoparticles as a Drug Delivery Vehicle. Malaysian J. Anal. Sci. 2016, 20, 1382-1389.
  29. Singho, N.D.; Johan, M.R. Complex Impedance Spectroscopy Study of Silica Nanoparticles Via Sol-Gel Method. Int. J. Electrochem. Sci. 2012, 7, 5604-5615.
  30. Beganskiene, V.; Sirutkaitis, M.; Kurtinaitiene, M.; Juskenas, R.; Kareiva, A. FTIR, TEM and NMR Investigations of Stöber Silica Nanoparticles. Mater. Sci. (Medziagotyra) 2004, 10, 287-290.
  31. Yang, Q.; Gong, X.; Song, T.; Yang, J.; Zhu, S.; Li, Y.; Cui, Y.; Li, Y.; Zhang, B.; Chang, J. Quantum dot-Based Immunochromatography Test Strip for Rapid, Quantitative and Sensitive Detection of Alpha Fetoprotein. Biosens. Bioelectron. 2011, 30, 145-150. https://doi.org/10.1016/j.bios.2011.09.002
  32. Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.F.; Ugliengo, P. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev. 2013, 113, 4216-4313. https://doi.org/10.1021/cr3003054
  33. Rimola, A.; Sodupe, M.; Ugliengo, P. Amide and Peptide Bond Formation: Interplay between Strained Ring Defects and Silanol Groups at Amorphous Silica Surfaces. J. Phys. Chem. C 2016, 120, 24817-24826. https://doi.org/10.1021/acs.jpcc.6b07945
  34. Hassanali, A.; Zhang, H.; Knight, C.; Shin, Y.K.; Singer, S.J. The Dissociated Amorphous Silica Surface: Model Development and Evaluation. J. Chem. Theory Comput. 2010, 6, 3456-3471. https://doi.org/10.1021/ct100260z