HYDROGEL MEMBRANES BASED ON COPOLYMERS OF 2-HYDROXY-ETHYL METHACRYLATE WITH POLYVINYLPYRROLIDONE, MODIFIED WITH MONTMORILLONITE AND SILVER NANOPARTICLES

2023;
: 139-144
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Hydrogel membranes based on copolymers of 2-hydroxyethyl methacrylate with polyvinylpyrrolidone, modified with inorganic additives were synthesized. The influence of montmorillonite and silver on the properties of synthesized composite hydrogel membranes was studied. It was established that montmorillonite improves the mechanical properties of membranes, but slightly reduces their permeability. The chemistry of the recovery reaction of silver from its salts using polyvinylpyrrolidone as a reducing agent and stabilizer is proposed. The conducted studies confirmed the prospects of using synthesized hydrogels based on HEMA/PVP copolymers which contain special additives for the marking of biomedical materials with antibacterial properties.

1. Can, V., Abdurrahmanoglu, S., Okay, O. (2007). Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer, 48(17), 5016-5023. doi: 10.1016/j.polymer.2007.06.066
https://doi.org/10.1016/j.polymer.2007.06.066
2. Rose, S., Dizeux, A., Narita, T., Hourdet, D., Marcellan, A. (2013). Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 46(10), 4095-4104. doi: 10.1021/ma400447j
https://doi.org/10.1021/ma400447j
3. Mohan, Y. M., Lee, K., Premkumar, T., Geckeler, K. E. (2007). Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer, 48(1), 158-164. doi: 10.1016/j.polymer.2006.10.045
https://doi.org/10.1016/j.polymer.2006.10.045
4. Haraguchi, K., Li, H., Matsuda, K., Takehisa T., Elliott, E. (2005). Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels. Macromolecules, 38(8), 3482-3490. doi: 10.1021/ma047431c
https://doi.org/10.1021/ma047431c
5. Suberlyak, O., Melnyk, Y., Skorokhoda, V. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50(6), 889-896. doi: 10.1007 / s11003-015-9798-8
https://doi.org/10.1007/s11003-015-9798-8
6. Melnyk, Y., Stetsyshyn, Y., Skorokhoda, V., Nastishin, Y. (2020). Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) hydrogel membranes for encapsulated forms of drugs. Journal of Polymer Research, 27(11), 1-11, 354. doi: 10.1007/s10965-020-023335-7
https://doi.org/10.1007/s10965-020-02335-7
7. Yang, Q., Adrus, N., Tomicki, F., Ulbricht, M. (2011). Composites of functional polymeric hydrogels and porous membranes, Journal of Materials Chemistry, 21(9), 2783-2811. doi: 10.1039/c0jm02234a
https://doi.org/10.1039/C0JM02234A
8. Skorokhoda, V. Y., Melnyk, Y. Y., Shalata, V. Y., Skorokhoda, T. V., Suberliak, S. A. (2017). An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. Eastern-European Journal of Enterprise Technologies, 1, 6(85), 50-55. doi: 10.15587/1729-4061.2017.92368
https://doi.org/10.15587/1729-4061.2017.92368
9. Liu, p., Zhang, l. (2007). Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents, Separation and Purification Technology, 2007, 58(1): 32-39. doi: 10.1016/j.seppur.2007.07.007
https://doi.org/10.1016/j.seppur.2007.07.007
10. Meng, N., Zhou, N.-L., Zhang, S.-Q., Shen, J. (2009). Synthesis and antimicrobial activities of polymer/ montmorillonite-chlorhexidine acetate nanocomposite films, Applied Clay Science. 42(3-4), 667-670. doi: 10.1016/j.clay.2008.06.016
https://doi.org/10.1016/j.clay.2008.06.016
11. Fragal, V. H., Cellet, T. S., Pereira, G. M., Fragal, E. H., Costa, M. A., Nakamura, C. V., Asefa, T., Rubira, A. F., Silva, R. (2016). Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces. Intern. Journal of Biol. Macromol, 91, 329-337. doi: 10.1016/j.ijbiomac.2016.05.056
https://doi.org/10.1016/j.ijbiomac.2016.05.056
12. Rai, M., Yadav, A., Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. doi: 10.1016/j.biotechadv.2008.09.002
https://doi.org/10.1016/j.biotechadv.2008.09.002
13. Zheng, Y., Cai, C., Zhang, F., Monty, J., Linhardt, R. J., Simmons, T. J. (2016). Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology, 27(5), 055102. doi: 10.1088/0957-4484/27/5/055102
https://doi.org/10.1088/0957-4484/27/5/055102
14. Tsai, T. T., Huang, T. H., Chang, C. J., Yi-Ju Ho, N., Tseng, Y. T., Chen, C. F. (2017). Antibacterial cellulose paper made with silver-coated gold nanoparticles, Scientific Reports. 7(1), 3155. doi: 10.1038/s41598-017-03357-w
https://doi.org/10.1038/s41598-017-03357-w
15. Dudok H. D., Semenyuk N. B., Skorokhoda V. Y., Melʹnyk YU. YA., Shalata V. YA. (2021). Doslidzhennya zakonomirnostey oderzhannya nanochastynok sribla z vykorystannyam polivinilpirolidonu ta yikh vplyv na funhibakterytsydni vlastyvosti kompozytiv. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 4(1), 237-242. doi: 10.23939/ctas2021.01.237
https://doi.org/10.23939/ctas2021.01.237
16. Melʹnyk, YU. YA., Kos, P. O., Suberlyak, O. V. (2020). Doslidzhennya kinetyky pryshcheplenoyi polimeryzatsiyi u tonkomu shari 2-hidroksietylmet¬akrylatu z polivinilpirolidonom. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 3(1), 209-213. doi: 10.23939/ctas2020.01.209
https://doi.org/10.23939/ctas2020.01.209
17. Dubyaga, V. P., Perepechkin, L. P., Katalevskiy, E. E. (1981). Polymer membranes. M.: Khimiya, 232.
18. Dudok, H. D., Semenyuk, N. B., Skorokhoda, V. Y., Hubriy Z. V. (2022). Vykorystannya polivinilpirolidonu yak vysokoefek¬tyvnoho vidnovnyka ta stabilizatora v reaktsiyakh syntezu nanochastynok sribla. Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya, 5(2), 185-190. doi: 10.23939/ctas2022.02.185
https://doi.org/10.23939/ctas2022.01.185