FUNDAMENTAL ASPECTS OF METROLOGICAL SUPPORT IN IoT

2024;
: pp.50-56
1
Lviv Polytechnic National University, Specialized Computer Systems Department
2
Lviv Politechnic National University

The application of intelligent sensors, network technologies, and machine learning in IoT and industry is increas- ingly widespread as a part of the development and implementation of Industry 4.0, Industry 5.0, and Smart City. It is necessary to review the fundamental principles of metrological support for production. This includes calibration, estimation of measurement uncertainty, traceability, and processing of large data sets to reproduce and compare the results of measurements of physical quan- tities remotely. Modern smart sensors are cost-effective, which makes traditional sensor calibration methods increasingly uneco- nomical. The utilization of advanced networking technologies, along with machine learning, complicates the pre-processing of measured values. Therefore, new solutions are required when it comes to implementing digital metrology.

In this article, a metrological framework for the full life cycle of measured data in IoT is presented. It ensures transparency, comparability, consistent quality and reliability of measured data, processing methods and results. The OPC-UA digital data com- munication standard is considered, which provides a single interface for exchanging digital data with devices from different manu- facturers or via different protocols. The syntax of a machine-readable representation of SI units and derived quantities as well as the structure of the sensor network metadata model are also described. Special emphasis is placed on dynamic calibration of sen- sors, determining measurement uncertainty in sensor networks, and implementing digital calibration certificates in IoT and industry.

  1. B. Jeckelmann, R. Edelmaier Metrological Infrastructure. Berlin, Boston: De Gruyter Oldenbourg; 2023. doi:10.1515/9783110715835
  2. E. Balestrieri, L. De Vito, F. Lamonaca, F. Picariello, S. Rapuano, I. Tudosa, Research challenges in Measurement for Internet of Things systems, Acta IMEKO vol. 7, no 4, 2018,pp. 82-94. doi: 10.21014/acta_imeko.v7i4.675
  3. Sascha Eichstädt, Anupam P. Vedurmudi, Maximilian Gruber, Daniel Hutzschenreuter, Fundamental aspects in sensor network metrology, Acta IMEKO, vol. 12, no 1, 2023.doi:10.21014/ACTAIMEKO.V12I1.1417
  4. S. Hackel, F. Hartig, J. Hornig, and T. Wiedenh, The digital calibration certificate, PTB – Mitteilungen Forschen und Prufen, vol. 127, no. 4, 2017, pp. 75–81. doi:10.7795/310.20170403
  5. T. Mustapää, J. Autiosalo, P. Nikander, J. E. Siegel and R. Viitala, Digital Metrology for the Internet of Things, Conference: 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, pp. 1-6, 2020, doi:10.1109/ GIOTS49054.2020.9119603.
  6. J. M. Barcelo-Ordinas, M. Doudou, J. Garcia-Vidal, and N. Badache, Self-calibration methods for uncontrolled environ- ments in sensor networks: A reference survey, Ad Hoc Networks, vol. 88, pp. 142–159, 2019. doi:10.1016/j.adhoc.2019.01.008.
  7. T. Schneider, N. Helwig, A. Schütze, Industrial condition monitoring with smart sensors using automated feature extraction and selection, Measurement Science and Techno- logy, vol. 29, no 9, 2018. doi: 10.1088/1361-6501/aad1d4
  8. Met4FoF – metrology for Factory of the Future – Tutorial on the one-touch calibration of MEMS temperature sensors, 2021. [Online]. Available: https://www.ptb.de/empir2018/ met4fof/home/
  9. B. Seeger, T. Bruns, Primary calibration of mechanical sensors with digital output for dynamic applications, Acta IMEKO, vol. 10, no 3, 2021, pp. 177-184. doi:10.21014/acta_imeko.v10i3.1075
  10. D. Hutzschenreuter et al., SmartCom Digital System of Units (DSI) Guide for the use of the metadata format used in metrology for the easy-to-use, safe, harmonised and unambiguous digital transfer of metrological data – Second Edition, 2020. doi: 10.5281/zenodo.3816686
  11. S. Eichstädt, M. Gruber, A. P. Vedurmudi, B. Seeger, T. Bruns, G. Kok, Toward smart traceability for digital sensors and the industrial Internet of Things, Sensors, vol. 21, no. 6, 2021. doi: 10.3390/s21062019
  12. Why OPC UA is so important, Indusoft Digital Manu- facturing, 2022. [Online]. Available: https://indusoft.com.ua/ blog/2022/05/18/chomu-opc-ua-takij-vazhlivij/
  13. J. Wright Siunitx – A comprehensive (SI) units package, Version v2.7s, [Online]. Available: http://mirrors.ctan.org/ macros/latex/contrib/siunitx/siunit
  14. IEC TS 62720:2017. Identification of units of measurements for computer-based processing, 2017.
  15. S. Eichstädt, C. Elster, I. M. Smith, T. J. Esward, Evaluation of dynamic measurement uncertainty – an open-source software package to bridge theory and practice, Journal of Sensors and Sensor Systems vol. 6, 2017, pp. 97-105. doi: 10.5194/jsss-6-97-2017
  16. O. Vasilevskyi. Conception of metrological assurance in Industry 4.0, Information technologies and computer enginery, vol. 48, no. 2, 2020. P. 37-44. doi: 10.31649/1999-9941-2020-48-2-37-44
  17.             Communication and validation of smart data in IoT- networks, Publishable Summary for 17IND02 SmartCom, 2021. [Online]. Available: https://www.ptb.de/empir2018/ smartcom/project
  18. Hutzschenreuter, D., Härtig, F., Wiedenhöfer, T., Hackel, S. G., Scheibner, A., Smith, I., Brown, C., & Wiebke Heeren, SmartCom Digital-SI (D-SI) XML exchange format for metrological data version 1.3.1 (1.3.1), Zenodo, 2020. doi:10.5281/zenodo.3826517
  19. S. Hackel, F. Härtig, T. Schrader, A. Scheibner, J. Loewe, L. Doering, B. Gloger, J. Jagieniak, D. Hutzschenreuter, and G. Söylev-Öktem. The fundamental architecture of the DCC. Measurement: Sensors, 18:100354, 2021. doi:10.1016/ j.measen.2021.100354.
  20. J. Nummiluikki, S. Saxholm, A Kärkkäinen, S. Koskinen. Digital Calibration Certificate in an Industrial Application, Acta IMEKO, vol. 12, no. 1 (2023). doi: 10.21014/actaimeko, v.12i1.1402.