Research on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.)

2024;
: 103-111
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The intensity of lipid peroxidation (LPO) and oxidative modification of proteins (OMP) was investigated under the influence of 40% and 70% aqueous-ethanol plant extracts (PE) of the root of Carlina acaulis L., flowers of Arnica montana L. and Calendula officinalis L. on rat liver hepatocytes under conditions of free radical oxidation initiation in vitro. Investigated plant extracts reduce the formation of free radicals in proteins and lipids, which is evidently associated with the presence of phenolic compounds, flavonoids, and polyphenols in the extracts. The best results were demonstrated by the plant extracts of arnica and calendula. Arnica extract at a concentration of 40% exhibited better antioxidant properties than its 70% extract.

1. Rabasa, C.,Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71-77. https://doi.org/10.1016/j.cobeha.2016.01.011
https://doi.org/10.1016/j.cobeha.2016.01.011
2. Gupta, R. K., Patel, A. K., Shah, N., Choudhary, K. A., Jha, U. K., Yadav, U. C., Gupta, P. K., & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: A Review. Asian Pacific Journal of Cancer Prevention, 15(11), 4405-4409. https://doi.org/10.7314/APJCP.2014.15.11.4405
https://doi.org/10.7314/APJCP.2014.15.11.4405
3. Petersen, R.C. (2017). Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophysics, 4(2), 240-283. https://doi: 10.3934/biophy.2017.2.240
https://doi.org/10.3934/biophy.2017.2.240
4. Buchko, O., Havryliak, V., Yaremkevych, O., Konechna, R., & Ohorodnyk, N. (2019). Metabolic processes in the organism of animals under the action of plant extract. Regul. Mech. Biosyst., 10(2), 149, 3-12. https://doi.org/10.15421/021922
https://doi.org/10.15421/021922
5. Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., Kumar, S., Bhatti, G.K., & Reddy, P.H. (2022).Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184(1), 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019
https://doi.org/10.1016/j.freeradbiomed.2022.03.019
6. Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol, 137289.
https://doi.org/10.5402/2012/137289
7. Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neuro-degenerative diseases. Annu. Rev. Pharmacol Toxicol, 36, 83−106.
https://doi.org/10.1146/annurev.pa.36.040196.000503
8. Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.Cell Signal, 24(5), 981−90.
https://doi.org/10.1016/j.cellsig.2012.01.008
9. Srikanthan, K., Shapiro, J. I., &Sodhi, K. (2016). The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease. Molecules., 21(9), 1172. https://doi: 10.3390/molecules21091172
https://doi.org/10.3390/molecules21091172
10. Shapoval, H. S. (2003). Mechanisms of antioxidant protection of the body under the action of active forms of oxygen. Ukraine biochem. journal, 75(2), 5-13.
11. Mizutani, T., & Masaki, H. (2014). Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Experimental Dermatology, 23(1), 23-26. https://doi:10.1111/exd.12395
https://doi.org/10.1111/exd.12395
12. Ahn, K. (2017). The worldwide trend of using botanical drugs and strategies for developing global drugs. Biochemistry & Molecular Biology Reports, 50(3), 111-116. https://doi: 10.5483/BMBRep.2017.50.3.221
https://doi.org/10.5483/BMBRep.2017.50.3.221
13. Chekman I. S. Flavonoyidy - kliniko-farmakolohichnyy aspekt. Fitoterapiya v Ukrayini. 2000. № 2. S. 3-5.
14. Pavela, R., Maggi, F., Petrelli, R., Cappellacci, L., Buccioni, M., Palmieri, A., Canale, A., &Benelli, G. (2020).Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol., 136, 111037. https://doi: 10.1016/j.fct.2019.111037.
https://doi.org/10.1016/j.fct.2019.111037
15. Dordevica, S., Tadica, V., Petrovic, S., Kucic-Markovic, Je., Dobric, S., Milenkovic, M., & Hadzifejzovice, N. (2012). Bioactivity assays on Carlina acaulis and C. acanthifolia root and herb extracts. Digest Journal of Nanomaterials and Biostructures, 7(3), 1213 - 1222.
16. Strzemskia, M., Wójciak-Kosiora, M., Sowaa, I., Załuskib, D., & Verpoortec, R. (2019). Historical and traditional medical applications of Carlina acaulis L. - A critical ethnopharmacological review. Journal of Ethnopharmacology, 239. https://doi.org/10.1016/j.jep.2019.111842
https://doi.org/10.1016/j.jep.2019.111842
17. Wnorowski, A., Wnorowska, S., Wojas-Krawczyk, K., Grenda, A., Staniak, M., Michalak, A., Woźniak, S., Matosiuk, D., Biała, G., Wójciak, M., Sowa, I., Krawczyk, P., & Strzemski, M. (2020). Toxicity of Carlina Oxide-A Natural Polyacetylene from the Carlina acaulis Roots - in vitro and in vivo study. Toxins, 12(4), 239. https://doi: 10.3390/toxins12040239
https://doi.org/10.3390/toxins12040239
18. Fedoryshyn, O. M., Petrina, R. O., Krvavych, A. S., Kniazieva, K. S., Hubrii, Z. V., & Atamanyuk, V. M. (2023). Research on aspects of the extraction kinetics of metabolites of Carlina acaulis while mixing. Voprosy khimii i khimicheskoi tekhnologii, 1(146), 3-10. https://doi: 10.32434/0321-4095-2023-146-1-3-10
https://doi.org/10.32434/0321-4095-2023-146-1-3-10
19. Konechna, R., Khropot, O., Petrina, R., Kurka, M., Gubriy, Z., & Novikov, V. (2017). Research of antioxidant properties of extracts of the plants and the callus biomass. Asian Journal of Pharmaceutical and Clinical Research, 10(7), 182-185.
https://doi.org/10.22159/ajpcr.2017.v10i7.18408
20. Dadi, T. H., Vahjen, W., & Zentek, J. (2020). Lythrum salicaria L. herb and gut microbiota of healthy post-weaning piglets. Focus on prebiotic properties and formation of postbiotic metabolites in ex vivo cultures. J. Ethnopharmacol, 261.
https://doi.org/10.1016/j.jep.2020.113073
21. Vorobetsʹ, N. M., & Pinyazhko, O. B. (2012). Fiziolohichno aktyvni rechovyny ta antyoksydantna aktyvnistʹ sutsvitʹ arniky hirsʹkoyi (Arnica montana). Ukrayinsʹkyy farmatsevtychnyy zhurnal, 1-2 (18-19), 82-85.
22. Pokorny, J. (2008). Application of phenolic antioxidants in food products. EJEAF Chem., 7, 3320-3324.
23. Pietta, P. G. (2000). Flavonoids as antioxidants. J.Nat.Food., 63,1035-1042.
https://doi.org/10.1021/np9904509
24. Roki, D., Menkovic, N., Savikin-Fodulovic, K., Krviokuca-Dokic, D., Ristic, M., &Grubisic, D. (2001). Flavonoids and essential oil in flower heads of inroduced Arnica chamissonis. J Herbs Spices Med Plants, 8(4), 19-27. https://doi.org/10.1300/J044v08n04_03
https://doi.org/10.1300/J044v08n04_03
25. Abbasi, A.M., Khan, M.A., & Ahmad, M. (2010). Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province. Ethnopharmacol, 128, 322-335.
https://doi.org/10.1016/j.jep.2010.01.052
26. Spitaler, R., Schlorhaufer, P.D., & Ellmerer, E.P. (2006). Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana. Phytochemistry, 67, 409. https://doi: 10.1016/j.phytochem.2005.11.018
https://doi.org/10.1016/j.phytochem.2005.11.018
27. Della Loggia, R., Tubaro, A., Sosa, S., Becker, H., Saar, St., & Isaac, O. (1994). The role of triterpenoids in the topical antiinflammatory activity of Calendula officinalis flowers. Planta Med., 60, 516-520. https://doi: 10.1055/s-2006-959562
https://doi.org/10.1055/s-2006-959562
28. Sheludko, L. P., & Kutsenko, N. I. (2013). Medicinal plants (breeding and seed production): monograph. Poltava, 183-189.
29. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119.
30. Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for Introductory statistics. In: Use and Interpretation, 4-th ed.; Routledge Taylor & amp; Francis Group, New York.
https://doi.org/10.4324/9780203127315
31. Prochazkova, D., Bousova, I., & Wilhelmova, N. (2011). Antioxidant and properties of flavonoids. Fitoterapia, 82, 513-523.
https://doi.org/10.1016/j.fitote.2011.01.018
32. Chekman, I. S. (2000). Flavonoids are a clinical and pharmacological aspect. Fitoterapiia v Ukraini, 2, 3-5.
33. Kishimoto, S., Maoka, T., Sumitomo, K., & Ohmiya, A. (2005). Analysis of carotenoid composition in petals of Calendula (Calendula officinalis L.). Biosci Biotechnol Biochem., 69(11), 2122-2128. https://doi.org/10.1271/bbb.69.2122.
https://doi.org/10.1271/bbb.69.2122
34. Pintea, A., Bele, C., Andrei, S., & Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47(1-4), 37-40. https://www2.sci.u-szeged.hu/ABS/2003/ ActaHP/4737.pdf.
35. Shahrbabaki, S. M. A. K., Zoalhasani, S., & Kodory, M. (2013). Effects of sowing date and nitrogen fertilizer on seed and flower yield of pot marigold (Calendula officinalis L.) in the Kerman. Adv Environ Biol., 7, 3925-3929.
36. Lushchak, V.I., Bahnyukava, T.V., & Luzhna, L.I. (2006). Pokaznyky oksydatyvnoho stresu. 2. Perekysy lipidiv.Ukrayinsʹkyy biokhimichnyy zhurnal, 78(5), 113-119.
37. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative Stress and Antioxidant Defense. W World Allergy Organization Journal, 5(1), 9-19. doi:10.1097/WOX.0b013e3182439613
https://doi.org/10.1097/WOX.0b013e3182439613