Mathematical calculation of the boundary conditions for zinc sulfide-selenide formation in the hydroxide-hydrazine-thiourea-selenium system

2024;
: 7-13
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Based on thermodynamic constants, the concentration limits of the initial zinc-containing salt and the range of pH values at which the depositions of ZnS and ZnSe without Zn(OH)2 are possible were calculated. The boundary conditions of the formation of the ZnSxSe1–x solid solution in the hydroxide-hydrazine-thiourea-selenium system were defined by the overlap area between the constructed ZnS and ZnSe formation zones. The task of complex intermolecular interaction between complexed zinc ions and two chalcogenizers in the working solution was solved on the basis of mathematical calculations. A sample of the ZnSxSe1–x film was deposited within the calculated area of its formation, which was confirmed by X-ray diffraction and elemental analysis. 

1. Sozanskyi, M. A., Shapoval, P. Yo., Chaykivska, R. T., Stadnik, V. Ye., & Yatchyshyn, Yo. Yo. (2016). Hidrokhimichnyy syntez tonkykh plivok tsynku selenidu (ZnSe) v prysutnosti natriyu hidroksydu ta yikhni vlastyvosti. Bulletin of Lviv Polytechnic National University. Series of Chemistry, Materials Technology and their Application, 841, 36-42. Retrieved from https://science.lpnu.ua/sites/default/files/journal-paper/2017/jun/3784/...
2. Kraus, W., & Nolze, G. (1996). Powder cell - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301-303. DOI: 10.1107/s0021889895014920
https://doi.org/10.1107/S0021889895014920
3. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved from DOI: 10.18434/M32154
4. Feng, F., Li, K., Li, Y., & Ma, Z. (2017). Synthesis of hollow CUS and PDS via microwave-assisted Cation Exchange. Journal of Nanoscience and Nanotechnology, 17(5), 3615-3619. DOI: 10.1166/jnn.2017.13038
https://doi.org/10.1166/jnn.2017.13038
5. Zhao, Q., Tang, Z., Pan, Y., Han, J., Yang, J., Guo, Y., Lai, X., Yang, Z., & Li, G. (2023). The Ksp gap enabled precipitation transformation reactions from transition metal hydroxides to sulfides for alkali metal ion storage. Inorganic Chemistry Frontiers, 10(11), 3406-3414. DOI: 10.1039/d3qi00324h
https://doi.org/10.1039/D3QI00324H
6. Pingale, P. C., Mane, S. T., Lendave, S. A., Kamble, S. S., Suryawanshi, R. V., Singh, A., Kothari, D. C., Deshmukh, L. P., & Sharon, M. (2013). Liquid phase chemical deposition of high tech ZnSe Thin Flims. Journal of Nepal Chemical Society, 30, 130-137. DOI: 10.3126/jncs.v30i0.9384
https://doi.org/10.3126/jncs.v30i0.9384
7. Pawar, S. W., Meshram, A. A., Tabhane, P., & Tabhane, V. A. (2018). Photochemical deposition of ZnSe thin films. Advanced Science, Engineering and Medicine, 10(7), 767-772. DOI: 10.1166/asem.2018.2254
https://doi.org/10.1166/asem.2018.2254
8. Wen, Y., Bao, Z., & Wu, X. (2018). Research on recovery of valuable metals in waste acid from copper smelting flue gas acid-making and reduction and harmless treatment of solid wastes. The Minerals, Metals & Materials Series, 303-312. DOI: 10.1007/978-3-319-95022-8_24
https://doi.org/10.1007/978-3-319-95022-8_24
9. Haynes, W. M. (Ed.) (2016) CRC Handbook of Chemistry and Physics (97th ed.). CRC Press, Taylor & Francis Group. DOI: 10.1201/9781315380476
https://doi.org/10.1201/9781315380476
10. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69-76. Retrieved from https://udhtu.edu.ua/public/userfiles/file/VHHT/2018/4/Sozanskyi.pdf
11. Cameron, W. (2010). Cyanamides. Kirk-Othmer Encyclopedia of Chemical Technology, 1-15. DOI: 10.1002/0471238961.0325011416012005.a01.pub3
https://doi.org/10.1002/0471238961.0325011416012005.a01.pub3
12. García-Valenzuela, J. A. (2016). Simple thiourea hydrolysis or intermediate complex mechanism? taking up the formation of metal sulfides from metal-thiourea alkaline solutions. Comments on Inorganic Chemistry, 37(2), 99-115. DOI: 10.1080/02603594.2016.1230547
https://doi.org/10.1080/02603594.2016.1230547
13. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology, 10, 317-323. DOI: 10.23939/chcht10.03.317
https://doi.org/10.23939/chcht10.03.317
14. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117-161. DOI: 10.1016/j.cap.2010.07.007
https://doi.org/10.1016/j.cap.2010.07.007
15. Liu, J., Wei, A., & Zhao, Y. (2014). Effect of different complexing agents on the properties of chemical-bath-deposited ZnS thin films. Journal of Alloys and Compounds, 588, 228-234. DOI: 10.1016/j.jallcom.2013.11.042
https://doi.org/10.1016/j.jallcom.2013.11.042