NUMERICAL MODELING OF THE WASTEWATER PURIFICATION PROCESS FROM HEAVY METALS USING THE ELECTRODIALYSIS METHOD

EP.
2025;
: рр. 288-296
1
Lviv Polytechnic National University
2
Jan Dlugosz University in Czestochowa

This study aimed to develop a mathematical model of ion transport in a system featuring a free electrolyte with membrane barriers and to investigate the interaction between diffusion and migration flows in different parts of the channel. The article presents the results of numerical modelling of the wastewater treatment process for copper ions using the electrodialysis method. Electrodialysis is a promising technology for removing dissolved ions from aqueous media due to its high efficiency, environmental safety, and the possibility of regenerating valuable components. The study developed a mathematical model that enables the simulation of how heavy metal ions, specifically copper ions (Cu²⁺), migrate through an electrodialysis cell under the influence of an electric current. The model is implemented in the COMSOL Multiphysics environment, which enables the consideration of all the above aspects with high accuracy. The modelling process analysed the features of the transport of Cu²⁺ and SO₄²⁻ ions in the electrodialysis unit. Opposite directions of migration flow for cations and anions were found, which is consistent with the nature of their electric charges. Spatial heterogeneity of flow distribution was also established, and the need to take these features into account when optimising electrodialysis processes was substantiated. The modelling results confirm the effectiveness of electrodialysis for removing heavy metal ions from wastewater and indicate critical areas where efficiency losses may occur or ion concentrations exceed permissible limits. The obtained data can be used to improve the geometry of the channels, the membranes configuration and energy efficiency of electrodialysis units.

1. Abdullayev, E., Vakili, A. H., Amr, S. A, Karaağaç, S. U., & Alazaiza, M. Y. (2024). Navigating Heavy Metal Removal: Insights into Advanced Treatment Technologies for Wastewater: A Review. Global NEST Journal, 26(2024)(6), 1-12. doi: https://doi.org/10.30955/gnj.06247

2. Alkhadra, M. A., & Bazant, M. Z. (2022). Continuous and selective separation of heavy metals using shock electrodialysis. Industrial & Engineering Chemistry Research, 61(43), 16240–16246. doi: https://doi.org/10.1021/acs.iecr.2c02627

3. Ayach, J., El Malti, W., Duma, L., Lalevée, J., Al Ajami, M., Hamad, H., & Hijazi, A. (2024). Comparing conventional and advanced approaches for heavy metal removal in wastewater treatment: An in-depth review emphasising filter-based strategies. Polymers, 16(14), 1959. doi: https://doi.org/10.3390/polym16141959

4. Bunani, S., Abbt -Braun, G., & Horn, H. (2024). Heavy metal removal from aqueous solutions using a customised bipolar membrane electrodialysis process. Molecules, 29(8), 1754. doi: https://doi.org/10.3390/molecules29081754

5. Ding, T., Huo, Q., Sun, D., Ji, L., & Gao, J. (2023). Surface implantation of ionically conductive polyhydroxyethylaniline on a cation exchange membrane for efficient heavy metal ions separation. Journal of Environmental Chemical Engineering, 12(1), 111760. doi: https://doi.org/10.1016/j.jece.2023.111760

6. Ebrahimi Gardeshi, M., Arab, H., & Drogui, P. (2024). Hybrid process combining electrocoagulation and electrodialysis for chloride ions removal from runoff water loaded with road de-icing salts: Statistical optimisation by response surface methodology. Journal of Water Process Engineering, 58, 104830. doi: https://doi.org/10.1016/j.jwpe.2024.104830

7. Feng, X., Cen , D., & Wu, Y. (2024). Combination of precipitation-adsorption-bipolar membrane electrodialysis for mine water treatment. Water, 16 (11), 1474. doi: https://doi.org/10.3390/w16111474

8. Ghasemi, S. (2023). Heavy Metal Removal from Wastewater via Photocatalytic Membrane. In Membrane Technologies for Heavy Metal Removal from Water (R. 223–241). CRC Press. https://doi.org/10.1201/9781003326281-13

9. Gumnitsky, J., Sabadash , V., Matsuska, O., Lyuta, O., Hyvlud, A., & Venger, L. (2022). Dynamics of Adsorption of Copper Ions in Fixed Bed Column and Mathematical Interpretation of the First Stage of the Process. Chemistry & Chemical Technology, 16(2), 267–273. doi: https://doi.org/10.23939/chcht16.02.267

10. Ji, X., Jiang, H., Huo, Z., Zhu, C., & Chen, H. (2024). Electrodialysis coupled with nano-activated carbon (ED-NAC): A promising technology for the removal of trace pollutants in saline-alkaline waters. Frontiers in Environmental Science, 12. doi: https://doi.org/10.3389/fenvs.2024.1507095

11. Kim, J. G., Ku, J., Jung, J., Park, Y. S., Choi, G. H., Hwang, S. S., Lee, H., & Lee, A. S. (2024). Ion-exchangeable and sorptive reinforced membranes for efficient electrochemical removal of heavy metal ions in wastewater. Journal of Cleaner Production, 438, 140779. doi: https://doi.org/10.1016/j.jclepro.2024.140779

12 Lan, S., Yang, Y., Wang , Z., Zheng , Y., Li , J., Zhao , Q., & Liu , T. (2025). Study on Membrane Electrolysis for the Removal of Fe from the Leachate of Coal Fly Ash. Journal of Environmental Chemical Engineering, 438, 117234. doi: https://doi.org/10.1016/j.jece.2025.117234

13. Liu, Y., Dai, L., Ke, X., Ding, J., Wu, X., Chen, R., & Van der Bruggen, B. (2022) . Arsenic and cation metal removal from copper slag using a bipolar membrane electrodialysis system. Journal of Cleaner Production, 338, 130662. doi: https://doi.org/10.1016/j.jclepro.2022.130662

14. Proskynitopoulou, V., Vourros, A., Garagounis, I., Dimopoulos Toursidis, P., Lorentzou, S., Zouboulis, A., & Panopoulos, K. (2024). Enhancing nutrients and water recovery from liquid digestate: A comparative study of selective electrodialysis and conventional treatment methods. Journal of Environmental Chemical Engineering, 12 (3), 112675. doi: https://doi.org/10.1016/j.jece.2024.112675

15. Sabadash, V., & Omelianova, S. (2021). Mathematical prediction of the scale of migration of heavy metals in the soil profile. At the 15th International Conference on Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers. doi: https://doi.org/10.3997/2214-4609.20215k2048

16. Sabadash, V., Nowik-Zajaç, A., & Gumnitsky, J. (2025). Adsorption of Pb2+ and Zn2+ ions from aqueous solutions with natural zeolite. Environmental Problems, 10(2), 191–196. doi: https://doi.org/10.23939/ep2025.02.191

17. Yu, Y., Liu, H., Wang, P., Kong, X., Jin, H., Chen, X., Chen, J., & Chen, D. (2024). Tactfully introducing an amphoteric group into an electroactive membrane motivates highly efficient H2O splitting for the reversible removal and recovery of nickel (II). Journal of Dangerous Materials, 481, 136527. doi: https://doi.org/10.1016/j.jhazmat.2024.136527

18. Zha, F., Wang, S., Liu, Z., Dai, J., Yue, S., Qi, W., & Zhang, S. (2023). Removal of heavy metals from fly ash using electrodialysis driven by a bioelectrochemical system: a case study of Pb, Mn, Cu and Cd. Environmental Technology, 45(14), 2709–2720. doi: https://doi.org/10.1080/09593330.2023.2185818

19. Zhang, H., Jiang, X., Zhao, M., Ma, X., Yang, Y., & Li, T. (2024). Performance of ball-milling-modified coal gangue on Pb 2+, Zn 2+, and NH 4+ –N adsorption. Journal of Material Cycles and Waste Management, 26, 2115–2127. doi: https://doi.org/10.1007/s10163-024-01947-1

20. Zhang, L., Qin, L., Ma, L., Shen, Z., Jin, Y., & Chen, S. (2024). Treatment of electroplating wastewater using electrocoagulation and an integrated membrane. Water Science & Technology, 89(9), 2538–2557. doi: https://doi.org/10.2166/wst.2024.136

21. Zhang, T., Qian, Y., Zhang, C., Qian, T., & Yan, C. (2024). Critical metal recovery from spent lithium-ion battery leaching solutions using electrodialysis technologies: Strategies and challenges. Inorganic Chemistry Frontiers, 11, 7775-7792. doi: https://doi.org/10.1039/d4qi01978d

22. Zimmermann, P., Wahl, K., Tekinalp , Ö., Solberg, S. B. B., Deng, L., Wilhelmsen, Ø., & Burheim, O. S. (2024). Selective recovery of silver ions from copper-contaminated effluents using electrodialysis. Desalination, 572, 117108. doi: https://doi.org/10.1016/j.desal.2023.117108