Prediction of Higher Heating Value of Raw Materials and Biochar

2025;
: pp. 354 - 368
1
National Technical University Kharkiv Polytechnic Institute; State Enterprise "Ukrainian State Research Institute for Carbochemistry (SE “UKHIN), Ukraine
2
State Enterprise "Ukrainian State Research Institute for Carbochemistry (UKHIN), coal department Kharkiv, Ukraine
3
Riga Technical University, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Institute of Agricultural Resources and Economics, Stende Research Centre, „Dizzemes‟
4
Lviv Polytechnic National University, Ukraine
5
Lviv Polytechnic National University, Ukraine
6
National Technical University Kharkiv Polytechnic Institute, Ukraine
7
National Technical University Kharkiv Polytechnic Institute, Ukraine
8
Lviv Polytechnic National University, Ukraine

One of the most essential characteristics of biochar (charcoal) is its higher heating value. The higher heating value for the dry ashless state of 35 samples of raw vegetable materials and charcoal was determined to establish the dependencies between the quality of the raw material and the produced biochar samples. Biochar production was carried out using modernized equipment under the patented technology. Mathematical and graphical dependencies of the experimental and calculated higher heating values for the vegetable raw materials to produce pyrolysis gas and charcoal were established. The results indicate the acceptability of the established dependencies and allow the conclusion about the possibility of predicting the higher calorific properties of plant raw materials and charcoal. The obtained data have considerable practical significance. The use of the results proposed by the authors will significantly improve the biowaste processing process in industry and increase the share of the circular economy.

[1]     Cabinet of Ministers of Ukraine, Order No. 373 On the approval of the Energy Strategy of Ukraine for the period up to 2050, dated April 21, 2023; Kyiv. https://www.kmu.gov.ua/npas/pro-skhvalennia-enerhetychnoi- stratehii-ukrainy-na-period-do-2050-roku-373r-210423

[2]     Cabinet of Ministers of Ukraine, Order No. 761 On the approval of the National Renewable Energy Action Plan for the period up to 2030 and the plan of measures for its implementation, dated August 13, 2024; Kyiv. https://www.kmu.gov.ua/npas/pro- zatverdzhennia-natsionalnoho-planu-dii-z-vidnovliuvanoi- enerhetyky-na-p-a761

[3]     Plachkova, S. G.; Plachkov, I. V.; Dunaevska, N. I.; Podgurenko, V. S.; Shilyaev, B. A.; Landau Y. O.; Sygal, I. Ya.; Danylko, G. D. Energy: history, modernity and future. Book 5. Electricity and environmental protection. Energy functioning in the modern world; Kyiv, 2013. http://energetika.in.ua/ua/books/book-1

[4]        Rahimi, Z.; Anand, A.; Gautam, Sh. An Overview on Thermochemical Conversion and Potential Evaluation of Biofuels Derived from Agricultural Wastes. Energy Nexus 2022, 7, 100125. https://doi.org/10.1016/j.nexus.2022.100125

[5]     Roni, M. S.; Chowdhury, S.; Mamun, S.; Marufuzzaman, M.; Lein, W.; Johnson, S. Biomass Co-Firing Technology with Policies, Challenges, and Opportunities: A Global Review. Renew. Sustain. Energy Rev. 2017, 78, 1089–1101. https://doi.org/10.1016/j.rser.2017.05.023

[6]     Funke, A.; Ziegler, F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. https://doi.org/10.1002/bbb.198

[7]     Zhang, C.; Fang, J.; Chen, W.-H.; Kwon, E. E.; Zhang, Y. Effects of Water Washing and KOH Activation for Upgrading Microalgal Torrefied Biochar. Sci. Total Environ. 2024, 921, 171254. https://doi.org/10.1016/j.scitotenv.2024.171254

[8]     Pambudi, S.; Jongyingcharoen, J. S.; Saechua, W. Thermochemical Treatment of Spent Coffee Grounds via Torrefaction: A Statistical Evidence of Biochar Properties Similarity between Inert and Oxidative Conditions. Results Eng. 2024, 21, 102012. https://doi.org/10.1016/j.rineng.2024.102012

[9]     Su, G.; Jiang, P. Machine Learning Models for Predicting Biochar Properties from Lignocellulosic Biomass Torrefaction. Bioresour. Technol. 2024, 399, 130519. https://doi.org/10.1016/j.biortech.2024.130519

[10]  Ngambia, A.; Mašek, O.; Erastova, V. Development of Biochar Molecular Models with Controlled Porosity. Biomass Bioenergy 2024, 184, 107199. https://doi.org/10.1016/j.biombioe.2024.107199

[11]  Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. https://doi.org/10.1016/j.rser.2018.03.071

[12]  Khan, T. A.; Saud, A. S.; Jamari, S. S.; Rahim, M. H. A.; Park, J.-W.; Kim, H.-J. Hydrothermal Carbonization of Lignocellulosic Biomass for Carbon Rich Material Preparation: A Review. Biomass Bioenergy 2019, 130, 105384. https://doi.org/10.1016/j.biombioe.2019.105384

[13]  Gan, Z.; Zhuang, X.; Cen, K.; Ba, Y.; Zhou, J.; Chen, D. Co- Pyrolysis of Municipal Solid Waste and Rice Husk Gasification Tar to Prepare Biochar: An Optimization Study Using Response Surface Methodology. Fuel 2024, 330, 125574. https://doi.org/10.1016/j.fuel.2022.125574

[14]  Ni, L.; Feng, Z.; Zhang, T.; Gao, Q.; Hou, Y.; He, Y.; Su, M.; Ren, H.; Hu, W.; Liu, Z. Effect of Pyrolysis Heating Rates on Fuel Properties of Molded Charcoal: Imitating Industrial Pyrolysis Process. Renew. Energy 2022, 197, 257–267. https://doi.org/10.1016/j.renene.2022.07.132

[15]  Durango Padilla, E. R.; Santiago Hansted, F. A.; Romero Luna, C. M.; Campos, C. I.; Yamaji, F. M. Biochar Derived from Agricultural Waste and its Application as Energy Source in Blast Furnace. Renew. Energy 2024, 220, 119688. https://doi.org/10.1016/j.renene.2023.119688

[16]  Daba, B. J.; Hailegiorgis, S. M. Torrefaction of Corncob and Khat Stem Biomass to Enhance the Energy Content of the Solid Biomass and Parametric Optimization. Bioresour. Technol. Rep. 2023, 21, 101381. https://doi.org/10.1016/j.biteb.2023.101381

 [17]  Kaya, E. Y.; Ali, I.; Ceylan, Z.; Ceylan, S. Prediction of Higher Heating Value of Hydrochars Using Bayesian Optimization Tuned Gaussian Process Regression Based on Biomass Characteristics and Process Conditions. Biomass Bioenergy 2024, 180, 106993. https://doi.org/10.1016/j.biombioe.2023.106993

[18] Wang, M.; Xie, Y.; Gao, Y.; Huang, X.; Chen, W. Machine Learning Prediction of Higher Heating Value of Biochar Based on Biomass Characteristics and Pyrolysis Conditions. Bioresour. Technol. 2024, 395, 130364. https://doi.org/10.1016/j.biortech.2024.130364

[19]  Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A. B.; Hassan, N.; El Rasoul, A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2020, 15, 61–73. https://ena.lpnu.ua/handle/ntb/60707

[20]  Hu, B.; Wang, K.; Wu, L.; Yu, S.-H.; Antonietti, M.; Titirici, M.-M. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Adv. Mater. 2010, 22, 813–828. https://doi.org/10.1002/adma.200902812

[21]  Malik, I.; Miroshnichenko, D.; Contreras, A. B.; Hassan, N.; El Rasoul, A. Prediction of the Higher Heating Value of Charcoal. Petrol. Coal 2022, 64, 100–105. https://www.vurup.sk/wp- content/uploads/2022/05/PC-X_Miroshnichenko_121.pdf

[22]  Kambo, H. S.; Dutta, A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050

[23]  Reza, M. T.; Andert, J.; Wirth, B.; Busch, D.; Pielert, J.; Lynam, J. G.; Mumme, J. Hydrothermal Carbonization of Biomass for Energy and Crop Production. Appl. Bioenergy, 2014, 1, 11–29. https://doi.org/10.2478/apbi-2014-0001

[24]  Libra, J. A.; Ro, K. S.; Kammann, C.; Funke, A.; Berge, N. D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; Emmerich, K.-H. Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis. Biofuels 2014, 2, 71–106. https://doi.org/10.4155/bfs.10.81

[25]  Malik, І. K.; Installation for continuous thermal processing of plant raw materials. Industrial property. 133566, 2019.

[26]  Ahmaruzzaman, M. Proximate Analyses and Predicting HHV of Chars Obtained from Cocracking of Petroleum Vacuum Residue with Coal, Plastics and Biomass. Bioresour. Technol. 2008, 99, 5043–5050. https://doi.org/10.1016/j.biortech.2007.09.021

[27]  Parikh, J.; Channiwala, S. A.; Chosal, G. K. A Correlation for Calculating HHV from Proximate Analysis of Solid Fuels. Fuel 2005, 84, 487–494. https://doi.org/10.1016/j.fuel.2004.10.010

[28]  Cordero, T.; Marquez, F.; Rodriquez-Marasol, J.; Rodriguez, J. J. Predicting Heating Values of Lignocellulosic and Carbonaceous Materials from Proximate Analysis. Fuel 2001, 80, 1567–1571. https://doi.org/10.1016/S0016-2361(01)00034-5

[29]  Jimenez, L.; Gonzalez, F. Study of the Physical and Chemical Properties of Lignocellulosic Residues with a View to the Production of Fuels. Fuel 1991, 70, 947–950. https://doi.org/10.1016/0016-2361(91)90049-G

[30]  Han, J.; Yao, X.; Zhan, Y.; Oh, S.-Y.; Kim, L.-H.; Kim, H.-J. A Method for Estimating Higher Heating Value of Biomass-Plastic Fuel. J. Energy Inst. 2017, 90, 331–335. https://doi.org/10.1016/j.joei.2016.01.001

[31]  Noushabadi, A. S.; Dashti, A.; Ahmadijokani, F.; Hu, J.; Mohammadi, A. H. Estimation of Higher Heating Values (HHVs) of Biomass Fuels Based on Ultimate Analysis Using Machine Learning Techniques and Improved Equation. Renew. Energy 2021, 179, 550–562. https://doi.org/10.1016/j.renene.2021.07.003

[32]  Telmo, C.; Lousada, J. The Explained Variation by Lignin and Extractive Contents on Higher Heating Value of Wood. Biomass Bioenergy 2011, 35, 1663–1667. https://doi.org/10.1016/j.biombioe.2010.12.038