INVESTIGATION OF THE EFFICIENCY OF A BEET PULP FILTRATION DRYING PROCESS

EP.
2024;
: pp. 268-274
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
University of ZagrebFaculty of Mechanical Engineering and Naval Architecture

This article presents the results of experimental studies investigating the energy consumption per 1 kg H2O required for the filtration drying of beet pulp.  The optimal process parameters for the removal of 1 kg of moisture from the dried beet pulp were determined, which included the height of the layer of dried material H=120 mm, the thermal agent temperature T = 90 °C and the thermal agent velocity v0 = 1.76 m/s.  Regarding these parameters, the total energy consumption for drying by the filtration method from the initial moisture content of 88.12 % wt. to the final moisture level of 14 % wt. is 3,515 kW·h/kg H2O. Based on the experimental data, a calculation was made for an industrial filtration drying unit, for which the cost of removing 1 kg of moisture from beet pulp was determined: 3,28 kW·h/kg H2O. To evaluate the efficiency of the filtration drying process, we conducted a comparative analysis of the drying of beet pulp at a comparable capacity in a drum dryer. According to the calculations, the energy costs for removing 1 kg of moisture from beet pulp in a drum dryer are 3.11 kW·h/kg H2O. Considering the estimation of calculations and a significant reduction in the drying time with the filtration method (~10 times), it is possible to conclude that filtration drying is a beneficial and efficacious technique for beet pulp drying.

1. Cheremisina, S. (2021). Grain market in Ukraine: analysis of the current state and development prospects. Ekonomika APK, 316(2), 48–58. doi: https://doi.org/10.32317/2221-1055.202102048

https://doi.org/10.32317/2221-1055.202102048

2. Dygas, D., Kręgiel, D., & Berłowska, J. (2023). Sugar Beet Pulp as a Biorefinery Substrate for Designing Feed. Molecules, 28(5), 2064. doi: https://doi.org/10.3390/molecules28052064

https://doi.org/10.3390/molecules28052064

3. Dziubenko, V. H., Mileikovskyi, V. O., & Sachenko, I. A. (2018). Expansion of the range of wet air I-d diagram for environmental safe heat production. Environmental safety and natural resources, 26(2), 15–22. doi: https://doi.org/10.32347/2411-4049.2018.2.15-22

https://doi.org/10.32347/2411-4049.2018.2.15-22

4. Ivashchenko, N. V., & Bulyandra, O. F. (2014). Effective heat capacity of beet pulp. New ideas in food science - new products for the food industry: International scientific conference dedicated to the 130th anniversary of the National University of Food Technologies, 13-17 October 2014.

5. Ivashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., & Sobechko, I. B. (2023). Using coffee production waste as a raw material for solid fuel. Journal of Chemistry and Technologies, 30(4), 588–594. doi: https://doi.org/10.15421/jchemtech.v30i4.265116

https://doi.org/10.15421/jchemtech.v30i4.265116

6. Ivashchuk, O., Atamanyuk, V., Chyzhovych, R., & Boldyryev, S. (2024). Investigation of the beet pulp filtration drying kinetics. Environmental Problems, 9(3), 179–186. doi: https://doi.org/10.23939/ep2024.03.179

https://doi.org/10.23939/ep2024.03.179

7. Ivashchuk, O., Atamanyuk, V., & Chyzhovych, R. (2024). Research on hydrodynamics of the thermal agent flow for the beet pulp filtration drying. Proceedings of the NTUU “Igor Sikorsky KPI”. Series: Chemical engineering, ecology and resource saving, 3, 9–18. doi: https://doi.org/10.20535/2617-9741.3.2024.312415 

https://doi.org/10.20535/2617-9741.3.2024.312415

8. Ivashchuk, O., Atamanyuk, V., Chyzhovych, R., Manastyrska, V., Barabakh, S., & Hnativ, Z. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66–75. doi: https://doi.org/10.23939/chcht18.01.066

https://doi.org/10.23939/chcht18.01.066

9. Ivashchuk, O. S., Atamanyuk, V. M., & Chyzhovych, R. A. (2024). Valourization of using efficiency of filtration drying for alcohol distillery stillage. Case Studies in Chemical and Environmental Engineering, 10, 100820. doi: https://doi.org/10.1016/j.cscee.2024.100820

https://doi.org/10.1016/j.cscee.2024.100820

10. Joanna, B., Michal, B., Piotr, D., Agnieszka, W., Dorota, K., & Izabela, W. (2018). Sugar Beet Pulp as a Source of Valuable Biotechnological Products. Advances in Biotechnology for Food Industry, 2018, 359–392. doi: https://doi.org/10.1016/B978-0-12-811443-8.00013-X

https://doi.org/10.1016/B978-0-12-811443-8.00013-X

11. Jewiarz, M., Wróbel, M., Mudryk, K., & Szufa, S. (2020). Impact of the Drying Temperature and Grinding Technique on Biomass Grindability. Energies, 13(13), 3392. doi: https://doi.org/10.3390/en13133392

https://doi.org/10.3390/en13133392

12. Misra, V., & Shrivastava, A. K. (2022). It is understanding the Sugar Beet Crop and Its Physiology. Sugar Beet Cultivation, Management and Processing, 2022, 11–25). doi:  https://doi.org/10.1007/978-981-19-2730-0_2

https://doi.org/10.1007/978-981-19-2730-0_2

13. Muir, B. M., & Anderson, A. R. (2022). Development and Diversification of Sugar Beet in Europe. Sugar Tech, 24(4), 992–1009. doi: https://doi.org/10.1007/s12355-021-01036-9

https://doi.org/10.1007/s12355-021-01036-9

14. Mujumdar, A. S. (Ed.). (2014). Handbook of Industrial Drying. CRC Press. Retrieved from https://doi.org/10.1201/b17208

https://doi.org/10.1201/b17208

15. Novikova, I. V., Muravev, A. S., Agafonov, G. V., Korotkih, E. A., Malceva, O. Y., & Zueva, N. V. (2022). Technological measures to improve the environmental friendliness of alcohol industry enterprises. IOP Conference Series: Earth and Environmental Science, 1052(1), 012092. doi:  https://doi.org/10.1088/1755-1315/1052/1/012092

https://doi.org/10.1088/1755-1315/1052/1/012092

16. Rezaei, H., Lim, C. J., & Sokhansanj, S. (2022). A computational approach to determine the residence time distribution of biomass particles in rotary drum dryers. Chemical Engineering Science, 247, 116932. doi:  https://doi.org/10.1016/j.ces.2021.116932

https://doi.org/10.1016/j.ces.2021.116932

17. Sai, P. S. T. (2013). Drying of Solids in a Rotary Dryer. Drying Technology, 31(2), 213–223. doi: https://doi.org/10.1080/07373937.2012.711406

https://doi.org/10.1080/07373937.2012.711406

18. Semenova, O. I., Bubliienko, N. O. & Vitiuk, O. I. (2013). Modern trends in the use and utilisation of beet pulp.   Efektivni Nastroje Modernich Ved – 2013: Proceedings of the IX International Scientific and Practical Conference. Praha. Retrieved from https://dspace.nuft.edu.ua/server/api/core/bitstreams/180c2d96-4ec7-4bfd...

19. Thibault, J., Alvarez, P. I., Blasco, R., & Vega, R. (2010). Modeling the Mean Residence Time in a Rotary Dryer for Various Types of Solids. Drying Technology, 28(10), 1136–1141. doi: https://doi.org/10.1080/07373937.2010.483045

https://doi.org/10.1080/07373937.2010.483045

20. Tuchkova, L. E., Verkhovets, I. A., Tikhoykina, I. M., & Chuvasheva, E. S. (2022). Evaluation of Impact Beetroot Pulp Obtained as a By-Product of Sugar Production Has on Quality of Grey Forest Soil. IOP Conference Series: Earth and Environmental Science, 988(2), 022039. doi: https://doi.org/10.1088/1755-1315/988/2/022039

https://doi.org/10.1088/1755-1315/988/2/022039