Polymer Waste as a Prospective Raw Material for the Production of Petroleum Products and Construction Materials

2025;
: pp. 369 - 377
1
National Technical University ‘Kharkiv Polytechnic Institute’, Ukraine
2
National Technical University ‘Kharkiv Polytechnic Institute’, Ukraine
3
National Technical University ‘Kharkiv Polytechnic Institute’, Ukraine
4
Kharkiv National Automobile and Highway University, Ukraine
5
National University of Civil Defenсe of Ukraine

A comprehensive approach to the disposal of solid polymer waste through the technological processing into various types of fuel, lubricants and construction materials is provided. The proposed approach will lead to the improvement of the environmental situation in Ukraine (due to the reduction of the number of landfills). The proposed method of solid polymer waste processing includes their collection, sorting, cleaning and thermal processing.

[1] Semko, P. P. Realiyi spivrobitnytstva biznesu ta orhaniv mistsevoho samovryaduvannya v haluzi povodzhennya z tverdymy pobutovymy vidkhodamy v Ukrayini ta napryamy pokrashchennya sytuatsiyi. http://greenchamber.org.ua/files/files/2019/TBO/ BUSINESS%20REALITIES.pdf (accessed May 09, 2023).

[2] Mykhailova, E. Plastic pollution is one of the main environmental problem of humanity. Municipal Economy of Cities 2020, 4, 109–121. https://khg.kname.edu.ua/index.php/khg/article/view/5642

[3] Safranov, T. A.; Prykhodʹko, V. Y.; Mykhaylenko, V. I. Vidkhody plastykovykh materialiv: otsinka utvorennya ta povodzhennya v rehionakh pivnichno-zakhidnoho prychornomor'ya. Ukrainian hydrometeorological journal 2023, 31, 122–130. https://doi.org/10.31481/uhmj.31.2023.08

[4] Martínez-Narro, G.; Hassan, S.; Phan, A. N. Chemical Recycling of Plastic Waste for Sustainable Polymer Manufacturing – A  Critical Review. J. Environ. Chem. Eng. 2024, 12, 112323. https://doi.org/10.1016/j.jece.2024.112323

[5] Khoaele, K. K.; Gbadeyan, O. J.; Chunilall, V.; Sithole, B. The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review. Sustainability 2023, 15, 5233. https://doi.org/10.3390/su15065233

[6] Pielichowski, K.; Njuguna, J.; Majka,T. M. Thermal Degradation of Polymeric Materials, 2nd edition; Elsevier, 2022. 

[7] Shevchenko, K.; Grigorov, A.; Ponomarenko, V.; Nahliuk, M.; Bondarenko, O.; Stetsiuk, Y; Matukhno, V. Technology for Producing Components of Technological and Boiler Fuels from Polymer Raw. Pet. Coal 2021, 63, 34–40.

[8] Fahim, I.; Mohsen, O.; ElKayaly, D. Production of Fuel from Plastic Waste: A Feasible Business. Polymers 2021, 13, 915. https://doi.org/ 10.3390/polym13060915

[9] Olufemi, A. S.; Olagboye, S. Thermal Conversion of Waste Plastics into Fuel Oil. International Journal of Petrochemical Science & Engineering 2017, 2, 252‒257. https://doi.org/10.15406/ipcse.2017.02.00064

[10] Miandad, R.; Rehan, M.; Barakat, M. A.; Aburiazaiza, A. S.; Khan, H.; Ismail, I. M. I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A. Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Front. Energy Res. 2019, 7, 1–17. https://doi.org/10.3389/fenrg.2019.00027

[11] Sivagami, K.; Divyapriya, G.; Selvaraj, R.; Madhiyazhagan, P.; Sriram, N; Nambi, I. Catalytic Pyrolysis of Polyolefin and Multilayer Packaging Based Waste Plastics: A Pilot Scale Study. Process Saf. Environ. Prot. 2021, 149, 497–506. https://doi.org/10.1016/j.psep.2020.10.038

[12] Rahman, M. H.; Bhoi, P. R.; Menezes, P. L. Pyrolysis of Waste Plastics into Fuels and Chemicals: A Review. Renew. Sustain. Energy Rev. 2023, 188, 113799. https://doi.org/10.1016/j.rser.2023.113799

[13] Padmanabhan, S.; Giridharan, K.; Stalin, B.; Kumaran, S.; Kavimani, V.; Nagaprasad, N.; Jule, L. T.; Krishnaraj, R. Energy Recovery of Waste Plastics into Diesel Fuel with Ethanol and Ethoxy Ethyl Acetate Additives on Circular Economy Strategy. Sci. Rep. 2022, 12, 5330. https://doi.org/10.1038/s41598-022-09148-2

[14] Ndiaye, N. K.; Derkyi, N. S. A.; Amankwah, E. Pyrolysis of Plastic Waste into Diesel Engine-Grade Oil. Sci.Afr. 2023, 21, e01836. https://doi.org/10.1016/j.sciaf.2023.e01836

[15] Capone, C.; Landro, L. D.; Inzoli, F.; Penco, M. Thermal and Mechanical Degradation during Polymer Extrusion Processing. Polym. Eng. Sci. 2007, 47, 1813–1819. http://dx.doi.org/10.1002/pen.20882

[16] Grigorov, A.; Sinkevich, I.; Ponomarenko, N.; Bondarenko, O.; Usachov, D.; Matukhno, V.; Shevchuk, O. Recycling of Polymer Waste into Plastic Lubricants. Pet. Coal 2022, 64, 709–713.

[17] Chumsantea, S.; Aryusuk, K.; Lilitchan, S.; Jeyashoke, N.; Krisnangkura, K. Reducing Oil Losses in Alkali Refining. JAOCS 2012, 89, 1913–1919. https://doi.org/10.1007/s11746-012-2079-x

[18] Made Kastiawan, I.; Nyoman Sutantra, I.; Sutikno. Effect of Melt Temperature and Holding Time on Mechanical Properties of Polypropylene Composites Bottom Ash Reinforced. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 988, 012117. https://doi:10.1088/1757-899X/988/1/012117

[19] Ibrahim, S. M.; Heikal, M.; Metwally, A. M.; Mohamed, O. A. Positive Impact of Polymer Impregnated on the Enhancement of the Physico-Mechanical Characteristics and Thermal Resistance of High-Volume Fly-Ash Blended Cement. Constr. Build. Mater2023, 381, 131243. https://doi.org/10.1016/j.conbuildmat.2023.131243

[20] Grygorov, A.; Tulska, A. Sposib vyznachennia adheziinykh vlastyvostei plastychnykh mastyl. UA No. 137396, October 25, 2019.

[21] Niyazbekova, R. K.; Userbaev, M. T.; Kokayeva, G. А.; Shansharova, L. S.; Konkanov, M. D.; Abdulina, S. A. Ash Deposits CHP – as an Additional Source of Raw Material for Construction Production. Chem. Eng. Trans. 2018, 70, 649–654. https://doi.org/10.3303/CET1870109 

[22] Hrynyshyn, K.; Chervinskyy, T.; Helzhynskyy, I.; Skorokhoda, V. Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis. Chem. Chem. Technol. 2023, 17, 923–928. https://doi.org/10.23939/chcht17.04.923

[23] Hrynyshyn, K.; Chervinskyy, T.; Skorokhoda, V. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159–163. https://doi.org/10.23939/chcht16.01.159

[24] Jana, S. K.; Pattanayak, S.; Bhausaheb, M. S.; Ruidas, B. C.; Pal, D. B.. Pyrolysis of Waste Plastic to Fuel Conversion for Utilization in Internal Combustion Engine. Chem. Chem. Technol. 2023, 17, 438–449. https://doi.org/10.23939/chcht17.02.438

[25] Pyshyev, S.; Lypko, Y.; Korchak, B.; Poliuzhyn, I.; Hubrii, Z.; Pochapska, I.; Rudnieva, K. Study on the Composition of Gasoline Fractions Obtained as a Result of Waste Tires Pyrolysis and Production Bitumen Modifiers from it. J. Energy Inst. 2024, 114, 101598. https://doi.org/10.1016/j.joei.2024.101598

[26] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342–347. https://doi.org/10.1016/j.sajce.2022.12.003

[27] Ranskiy, A.; Gordienko, O.; Korinenko, B.; Ishchenko, V.; Sakalova, H.; Vasylinych, T.; Malovanyy, M.; Kryklyvyi, R. Pyrolysis Processing of Polymer Waste Components of Electronic Products. Chem. Chem. Technol. 2024, 18, 103–108. https://doi.org/10.23939/chcht18.01.103

[28] Dvorkin, L. Y. Betony spetsialnogo priznachennia: Navchalnyyi posibnyk; Vydavnychyi dim “Kondor”, 2018.