The interesterification reaction of palm oil and methyl acetate to produce methyl ester and triacetin was conducted with biocatalysts of aromatic compounds, namely eugenol and cajuput oil. Aromatic compounds are the most efficient catalysts in the manufacturing process of biodiesel, leading to improved quality. Therefore, this study aimed to obtain a more effective and efficient biodiesel production process, with fewer procedural steps, in order to reduce production costs. The operating conditions of the study included 250 g of palm oil mass, a molar ratio of palm oil to methyl acetate at 1:6, a reaction temperature of 60oC, 300 rpm stirring speed, the catalyst mass of 0.75% palm oil mass, as well as reaction time of 15, 30, 45, 60, and 75 minutes. The molecular behaviour and parameters were the bond distance between atoms before and after the addition of the biocatalyst, potential energy, kinetic energy, and dipole moment, determined by the simulation using ChemDraw software.
[1] Casas, A.; Ramos, M. J.; Pérez, Á. New Trends in Biodiesel Production: Chemical Interesterification of Sunflower Oil with Methyl Acetate. Biomass Bioenergy 2011, 35, 1702–1709. https://doi.org/10.1016/j.biombioe.2011.01.003
[2] Laino, T.; Tuma, C.; Moor, P.; Martin, E.; Stolz, S.; Curioni, A. Mechanisms of Propylene Glycol and Triacetin Pyrolysis. J. Phys. Chem. A. 2012, 116, 4602–4609. https://doi.org/10.1021/jp300997d
[3] Kong, P. S.; Aroua, M. K.; Daud, W. M. A. W. Conversion of Crude and Pure Glycerol into Derivatives: A Feasibility Evaluation. Renew. Sustain. Energy Rev. 2016, 63, 533–555. https://doi.org/10.1016/j.rser.2016.05.054
[4] Melero, J. A.; Vicente, G.; Morales, G.; Paniagua, M.; Bustamante, J. Oxygenated Compounds Derived from Glycerol for Biodiesel Formulation: Influence on En 14214 Quality Parameters. Fuel 2010, 89, 2011–2018. https://doi.org/10.1016/j.fuel.2010.03.042
[5] Calero, J.; Luna, D.; Sancho, E. D.; Luna, C.; Bautista, F. M.; Romero, A. A.; Posadillo, A.; Berbel, J.; Verdugo-Escamilla, C. An Overview on Glycerol-Free Processes for the Production of Renewable Liquid Biofuels, Applicable in Diesel Engines. Renew. Sustain. Energy Rev. 2015, 42, 1437–1452. https://doi.org/10.1016/j.rser.2014.11.007
[6] Casas, A.; Ruiz, J. R.; Ramos, M. J.; Pérez, Á. Effects of Triacetin on Biodiesel Quality. Energy Fuels 2010, 24, 4481–4489. https://doi.org/10.1021/ef100406b
[7] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Biodiesel Production Process without Glycerol By-Product with Base Catalyst: Effect of Reaction Time and Type of Catalyst on Kinetic Energy and Solubility. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012058. https://doi.org/10.1088/1757-899x/1053/1/012058
[8] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Interesterification Process of Palm Oil Using Base Catalyst : The Effect of Stirring Speed and Type of Catalyst on Kinetic Energy and Dipole Moment. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 1580–1585.
[9] Buchori, L.; Anggoro, D. D.; Ma’Ruf, A. Biodiesel Synthesis from The Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583–590. https://doi.org/10.23939/chcht15.04.583
[10] Deska, A.; Zulhadjri; Tetra, O. N.; Efdi, M.; Syukri. Clay Enriched with Ca2+ and Cu2+ as The Catalyst for The Production of Methyl Esters from CPO on A Laboratory Scale. Chem. Chem. Technol. 2022, 16, 678–683.https://doi.org/10.23939/chcht16.04.678
[11] Daryono, E. D.; Jimmy, J.; Setiawan, F.; Wahyuni, S. S. Production of Biodiesel from Used Cooking Oil with Zeolite Supported CaO Catalyst: Effect of Catalyst Mass and Transesterification Reaction Time. In AIP Conf. Proc.; American Institute of Physics, 2024; Vol. 3077; pp 1–8. https://doi.org/10.1063/5.0201746
[12] Ali, R. M.; Elkatory, M. R.; Hamad, H. A. Highly Active and Stable Magnetically Recyclable CuFe2O4 as a Heterogenous Catalyst for Efficient Conversion of Waste Frying Oil to Biodiesel. Fuel 2020, 268, 117297. https://doi.org/10.1016/j.fuel.2020.117297
[13] Xie, W.; Wang, H. Immobilized Polymeric Sulfonated Ionic Liquid on Core-Shell Structured Fe3O4/SiO2 Composites: A Magnetically Recyclable Catalyst for Simultaneous Transesterification and Esterifications of Low-Cost Oils to Biodiesel. Renew. Energy 2020, 145, 1709–1719. https://doi.org/10.1016/j.renene.2019.07.092
[14] Han, Y. Z.; Hong, L.; Wang, X. Q.; Liu, J. Z.; Jiao, J.; Luo, M.; Fu, Y. J. Biodiesel Production from Pistacia Chinensis Seed Oil via Transesterification Using Recyclable Magnetic Cellulose- Based Catalyst. Ind. Crops. Prod. 2016, 89, 332–338. https://doi.org/10.1016/j.indcrop.2016.05.015
[15] Silveira Junior, E. G.; Justo, O. R.; Perez, V. H.; Reyero, I.; Serrano-Lotina, A.; Campos Ramirez, L.; Dos Santos Dias, D. F. Extruded Catalysts with Magnetic Properties for Biodiesel Production. Adv. Mater. Sci. Eng. 2018, 2018, 1–11. https://doi.org/10.1155/2018/3980967
[16] Manurung, R.; Widyawati, M.; Afrianto, R. The Synthesis Biodiesel from Palm Oil Through Interesterification Using Imobilized Lipase Enzym as Catalyst: The Effect of Amount of Biocatalyst, Mole Ratio of Reactan, Temperature to Yield. Int. J. Sci. Eng. 2014, 7, 174–177. https://doi.org/10.12777/ijse.7.2.174-177
[17] Medeiros, A. M.; Santos, Ê. R. M.; Azevedo, S. H. G.; Jesus, A. A.; Oliveira, H. N. M.; Sousa, E. M. B. D. Chemical Interesterification of Cotton Oil with Methyl Acetate Assisted by Ultrasound for Biodiesel Production. Braz. J. Chem. Eng. 2018, 35, 1005–1018. https://doi.org/10.1590/0104- 6632.20180353s20170001
[18] Ansori, A.; Mahfud, M. Ultrasound Assisted Interesterification for Biodiesel Production from Palm Oil and Methyl Acetate: Optimization Using RSM. In J. Phys.: Conf. Ser.; IOP Publishing Ltd, 2021; Vol. 1747; pp 1–10. https://doi.org/10.1088/1742-6596/1747/1/012044
[19] Ansori, A.; Mahfud, M. Box-Behnken Design for Optimization on Biodiesel Production from Palm Oil and Methyl Acetate Using Ultrasound Assisted Interesterification Method. Period. Polytech., Chem. Eng. 2022, 66, 30–42. https://doi.org/10.3311/PPch.17610
[20] Laipniece, L.; Kampars, V. Scale-up of Biodiesel Synthesis in Chemical Interesterification Reaction of Rapeseed Oil with Methyl Formate and Methyl Acetate. In World Congress on Civil, Structural, and Environmental Engineering; Avestia Publishing, 2022; pp 1–8. https://doi.org/10.11159/iceptp22.206
[21] Kusumaningtyas, R. D.; Normaliza, N.; Anisa, E. D. N.; Prasetiawan, H.; Hartanto, D.; Veny, H.; Hamzah, F.; Rodhi, M. N. M. Synthesis of Biodiesel via Interesterification Reaction of Calophyllum Inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis. Energies (Basel) 2022, 15, 7737. https://doi.org/10.3390/en15207737
[22] Daryono, E. D. Reactive Extraction Process in Isolation of Eugenol of Clove Essential Oil (Syzigium Aromaticum) Based on Temperature and Time Process. Int. J. Chemtech Res. 2015, 8, 564–569.
[23] Daryono, E. D.; Dewi, R. K.; Shofy, F.; Magribi, D. Preliminary Study of Mixing Used Cooking Oil and Lemon Peel Essential Oil as an Alternative Fuel to Replace Biodiesel. ARPN J. Eng. Appl. Sci. 2024, 19, 468–472.
[24] Shao, J.; Agblevor, F. New Rapid Method for the Determination of Total Acid Number (TAN) of Bio-Oils. Am. J. Biomass Bioenergy 2015, 4, 1–9. https://doi.org/10.7726/ajbb.2015.1001
[25] Riadi, L.; Purwanto, E.; Chandra, Y. Ash Base-Catalysed in Promoting Ozonolysis of Used Cooking Oil. Int. J. Eng. Technol. 2012, 12, 87–90.
[26] Baber, T. M.; Graiver, D.; Lira, C. T.; Narayan, R. Application of Catalytic Ozone Chemistry for Improving Biodiesel Product Performance. Biomacromolecules 2005, 6, 1334–1344. https://doi.org/10.1021/bm049397f
[27] Daryono, E. D.; Jimmy, J.; Setyawati, H. Production of Biodiesel Without Catalyst Separation with Palm Oil Interesterification Process Using Essential Oil Biocatalyst. Chem. Chem. Technol. 2024, 18, 356–362. https://doi.org/10.23939/chcht18.03.356
[28] Daryono, E. D.; Sinaga, E. J. Rapid in Situ Transesterification of Papaya Seeds to Biodiesel with the Aid of Co-Solvent. Int. J. Renew. Energy Res.2017, 7, 379–385.
[29] Eevera, T.; Rajendran, K.; Saradha, S. Biodiesel Production Process Optimization and Characterization to Assess the Suitability of the Product for Varied Environmental Conditions. Renew. Energy 2009, 34, 762–765. https://doi.org/10.1016/j.renene.2008.04.006
[30] Sajjadi, B.; Abdul Aziz, A. R.; Ibrahim, S. Investigation, Modelling and Reviewing the Effective Parameters in Microwave- Assisted Transesterification. Renewable Sustainable Energy Rev. 2014, 37, 762–777. https://doi.org/10.1016/j.rser.2014.05.021
[31] Purnami; Wardana, I. N. G.; Hamidi, N.; Sasongko, M. N.; Darmadi, D. B. The Effect of Rhodium (III) Sulfate and Clove Oil Catalysts on the Droplet Combustion Characteristics of Castor Oil. Int. J. Integr. Eng. 2019, 11, 66–71. https://doi.org/10.30880/ijie.2019.11.05.009
[32] Soebiyakto, G.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L. Addition of Bio-Additive as a Catalyst of Burning Vegetable Oil Influenced by 4 Pole Magnetic Field. East.-Eur. J. Enterp. Technol. 2020, 2/6 ((104)), 46–55. https://doi.org/10.15587/1729-4061.2020.198308
[33] Marlina, E.; Wijayanti, W.; Yuliati, L.; Wardana, I. N. G. The Role of Pole and Molecular Geometry of Fatty Acids in Vegetable Oils Droplet on Ignition and Boiling Characteristics. Renew. Energy 2020, 145, 596–603. https://doi.org/10.1016/j.renene.2019.06.064
[34] Waluyo, B.; Setiyo, M.; Saifudin; Wardana, I. N. G. The Role of Ethanol as a Cosolvent for Isooctane-Methanol Blend. Fuel 2020, 262, 116465. https://doi.org/10.1016/j.fuel.2019.116465
[35] Kadarohman, A.; Hernani; Khoerunisa, F.; Astuti, R. M. A Potential Study on Clove Oil, Eugenol and Eugenyl Acetate as Diesel Fuel Bio-Additives and Their Performance on One Cylinder Engine. Transport 2010, 25, 66–76. https://doi.org/10.3846/transport.2010.09