Реакцію переестерифікації пальмової олії та метилацетату для отримання метилового естеру та триацетину проводили з біокаталізаторами ароматичних сполук, а саме евгенолу та каяпутової олії. Ароматичні сполуки є найефективнішими каталізаторами в процесі виробництва біодизелю, що приводить до покращення якості. Тому це дослідження мало на меті отримати ефективніший і результативніший процес виробництва біодизелю з меншою кількістю процедурних етапів для зниження виробничих витрат. Робочі умови дослідження включали масу пальмової олії 250 г, молярне співвідношення пальмової олії до метилацетату 1:6, температуру реакції 60°C, швидкість перемішування 300 об/хв, масу каталізатора 0,75% від маси пальмової олії, а також час реакції 15, 30, 45, 60 і 75 хвилин. Молекулярна поведінка та параметри, такі як відстань зв'язку між атомами до та після додавання біокаталізатора, потенційна енергія, кінетична енергія та дипольний момент, були визначені за допомогою моделювання з використанням програмного забезпечення ChemDraw.
[1] Casas, A.; Ramos, M. J.; Pérez, Á. New Trends in Biodiesel Production: Chemical Interesterification of Sunflower Oil with Methyl Acetate. Biomass Bioenergy 2011, 35, 1702–1709. https://doi.org/10.1016/j.biombioe.2011.01.003
[2] Laino, T.; Tuma, C.; Moor, P.; Martin, E.; Stolz, S.; Curioni, A. Mechanisms of Propylene Glycol and Triacetin Pyrolysis. J. Phys. Chem. A. 2012, 116, 4602–4609. https://doi.org/10.1021/jp300997d
[3] Kong, P. S.; Aroua, M. K.; Daud, W. M. A. W. Conversion of Crude and Pure Glycerol into Derivatives: A Feasibility Evaluation. Renew. Sustain. Energy Rev. 2016, 63, 533–555. https://doi.org/10.1016/j.rser.2016.05.054
[4] Melero, J. A.; Vicente, G.; Morales, G.; Paniagua, M.; Bustamante, J. Oxygenated Compounds Derived from Glycerol for Biodiesel Formulation: Influence on En 14214 Quality Parameters. Fuel 2010, 89, 2011–2018. https://doi.org/10.1016/j.fuel.2010.03.042
[5] Calero, J.; Luna, D.; Sancho, E. D.; Luna, C.; Bautista, F. M.; Romero, A. A.; Posadillo, A.; Berbel, J.; Verdugo-Escamilla, C. An Overview on Glycerol-Free Processes for the Production of Renewable Liquid Biofuels, Applicable in Diesel Engines. Renew. Sustain. Energy Rev. 2015, 42, 1437–1452. https://doi.org/10.1016/j.rser.2014.11.007
[6] Casas, A.; Ruiz, J. R.; Ramos, M. J.; Pérez, Á. Effects of Triacetin on Biodiesel Quality. Energy Fuels 2010, 24, 4481–4489. https://doi.org/10.1021/ef100406b
[7] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Biodiesel Production Process without Glycerol By-Product with Base Catalyst: Effect of Reaction Time and Type of Catalyst on Kinetic Energy and Solubility. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012058. https://doi.org/10.1088/1757-899x/1053/1/012058
[8] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Interesterification Process of Palm Oil Using Base Catalyst : The Effect of Stirring Speed and Type of Catalyst on Kinetic Energy and Dipole Moment. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 1580–1585.
[9] Buchori, L.; Anggoro, D. D.; Ma’Ruf, A. Biodiesel Synthesis from The Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583–590. https://doi.org/10.23939/chcht15.04.583
[10] Deska, A.; Zulhadjri; Tetra, O. N.; Efdi, M.; Syukri. Clay Enriched with Ca2+ and Cu2+ as The Catalyst for The Production of Methyl Esters from CPO on A Laboratory Scale. Chem. Chem. Technol. 2022, 16, 678–683.https://doi.org/10.23939/chcht16.04.678
[11] Daryono, E. D.; Jimmy, J.; Setiawan, F.; Wahyuni, S. S. Production of Biodiesel from Used Cooking Oil with Zeolite Supported CaO Catalyst: Effect of Catalyst Mass and Transesterification Reaction Time. In AIP Conf. Proc.; American Institute of Physics, 2024; Vol. 3077; pp 1–8. https://doi.org/10.1063/5.0201746
[12] Ali, R. M.; Elkatory, M. R.; Hamad, H. A. Highly Active and Stable Magnetically Recyclable CuFe2O4 as a Heterogenous Catalyst for Efficient Conversion of Waste Frying Oil to Biodiesel. Fuel 2020, 268, 117297. https://doi.org/10.1016/j.fuel.2020.117297
[13] Xie, W.; Wang, H. Immobilized Polymeric Sulfonated Ionic Liquid on Core-Shell Structured Fe3O4/SiO2 Composites: A Magnetically Recyclable Catalyst for Simultaneous Transesterification and Esterifications of Low-Cost Oils to Biodiesel. Renew. Energy 2020, 145, 1709–1719. https://doi.org/10.1016/j.renene.2019.07.092
[14] Han, Y. Z.; Hong, L.; Wang, X. Q.; Liu, J. Z.; Jiao, J.; Luo, M.; Fu, Y. J. Biodiesel Production from Pistacia Chinensis Seed Oil via Transesterification Using Recyclable Magnetic Cellulose- Based Catalyst. Ind. Crops. Prod. 2016, 89, 332–338. https://doi.org/10.1016/j.indcrop.2016.05.015
[15] Silveira Junior, E. G.; Justo, O. R.; Perez, V. H.; Reyero, I.; Serrano-Lotina, A.; Campos Ramirez, L.; Dos Santos Dias, D. F. Extruded Catalysts with Magnetic Properties for Biodiesel Production. Adv. Mater. Sci. Eng. 2018, 2018, 1–11. https://doi.org/10.1155/2018/3980967
[16] Manurung, R.; Widyawati, M.; Afrianto, R. The Synthesis Biodiesel from Palm Oil Through Interesterification Using Imobilized Lipase Enzym as Catalyst: The Effect of Amount of Biocatalyst, Mole Ratio of Reactan, Temperature to Yield. Int. J. Sci. Eng. 2014, 7, 174–177. https://doi.org/10.12777/ijse.7.2.174-177
[17] Medeiros, A. M.; Santos, Ê. R. M.; Azevedo, S. H. G.; Jesus, A. A.; Oliveira, H. N. M.; Sousa, E. M. B. D. Chemical Interesterification of Cotton Oil with Methyl Acetate Assisted by Ultrasound for Biodiesel Production. Braz. J. Chem. Eng. 2018, 35, 1005–1018. https://doi.org/10.1590/0104- 6632.20180353s20170001
[18] Ansori, A.; Mahfud, M. Ultrasound Assisted Interesterification for Biodiesel Production from Palm Oil and Methyl Acetate: Optimization Using RSM. In J. Phys.: Conf. Ser.; IOP Publishing Ltd, 2021; Vol. 1747; pp 1–10. https://doi.org/10.1088/1742-6596/1747/1/012044
[19] Ansori, A.; Mahfud, M. Box-Behnken Design for Optimization on Biodiesel Production from Palm Oil and Methyl Acetate Using Ultrasound Assisted Interesterification Method. Period. Polytech., Chem. Eng. 2022, 66, 30–42. https://doi.org/10.3311/PPch.17610
[20] Laipniece, L.; Kampars, V. Scale-up of Biodiesel Synthesis in Chemical Interesterification Reaction of Rapeseed Oil with Methyl Formate and Methyl Acetate. In World Congress on Civil, Structural, and Environmental Engineering; Avestia Publishing, 2022; pp 1–8. https://doi.org/10.11159/iceptp22.206
[21] Kusumaningtyas, R. D.; Normaliza, N.; Anisa, E. D. N.; Prasetiawan, H.; Hartanto, D.; Veny, H.; Hamzah, F.; Rodhi, M. N. M. Synthesis of Biodiesel via Interesterification Reaction of Calophyllum Inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis. Energies (Basel) 2022, 15, 7737. https://doi.org/10.3390/en15207737
[22] Daryono, E. D. Reactive Extraction Process in Isolation of Eugenol of Clove Essential Oil (Syzigium Aromaticum) Based on Temperature and Time Process. Int. J. Chemtech Res. 2015, 8, 564–569.
[23] Daryono, E. D.; Dewi, R. K.; Shofy, F.; Magribi, D. Preliminary Study of Mixing Used Cooking Oil and Lemon Peel Essential Oil as an Alternative Fuel to Replace Biodiesel. ARPN J. Eng. Appl. Sci. 2024, 19, 468–472.
[24] Shao, J.; Agblevor, F. New Rapid Method for the Determination of Total Acid Number (TAN) of Bio-Oils. Am. J. Biomass Bioenergy 2015, 4, 1–9. https://doi.org/10.7726/ajbb.2015.1001
[25] Riadi, L.; Purwanto, E.; Chandra, Y. Ash Base-Catalysed in Promoting Ozonolysis of Used Cooking Oil. Int. J. Eng. Technol. 2012, 12, 87–90.
[26] Baber, T. M.; Graiver, D.; Lira, C. T.; Narayan, R. Application of Catalytic Ozone Chemistry for Improving Biodiesel Product Performance. Biomacromolecules 2005, 6, 1334–1344. https://doi.org/10.1021/bm049397f
[27] Daryono, E. D.; Jimmy, J.; Setyawati, H. Production of Biodiesel Without Catalyst Separation with Palm Oil Interesterification Process Using Essential Oil Biocatalyst. Chem. Chem. Technol. 2024, 18, 356–362. https://doi.org/10.23939/chcht18.03.356
[28] Daryono, E. D.; Sinaga, E. J. Rapid in Situ Transesterification of Papaya Seeds to Biodiesel with the Aid of Co-Solvent. Int. J. Renew. Energy Res.2017, 7, 379–385.
[29] Eevera, T.; Rajendran, K.; Saradha, S. Biodiesel Production Process Optimization and Characterization to Assess the Suitability of the Product for Varied Environmental Conditions. Renew. Energy 2009, 34, 762–765. https://doi.org/10.1016/j.renene.2008.04.006
[30] Sajjadi, B.; Abdul Aziz, A. R.; Ibrahim, S. Investigation, Modelling and Reviewing the Effective Parameters in Microwave- Assisted Transesterification. Renewable Sustainable Energy Rev. 2014, 37, 762–777. https://doi.org/10.1016/j.rser.2014.05.021
[31] Purnami; Wardana, I. N. G.; Hamidi, N.; Sasongko, M. N.; Darmadi, D. B. The Effect of Rhodium (III) Sulfate and Clove Oil Catalysts on the Droplet Combustion Characteristics of Castor Oil. Int. J. Integr. Eng. 2019, 11, 66–71. https://doi.org/10.30880/ijie.2019.11.05.009
[32] Soebiyakto, G.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L. Addition of Bio-Additive as a Catalyst of Burning Vegetable Oil Influenced by 4 Pole Magnetic Field. East.-Eur. J. Enterp. Technol. 2020, 2/6 ((104)), 46–55. https://doi.org/10.15587/1729-4061.2020.198308
[33] Marlina, E.; Wijayanti, W.; Yuliati, L.; Wardana, I. N. G. The Role of Pole and Molecular Geometry of Fatty Acids in Vegetable Oils Droplet on Ignition and Boiling Characteristics. Renew. Energy 2020, 145, 596–603. https://doi.org/10.1016/j.renene.2019.06.064
[34] Waluyo, B.; Setiyo, M.; Saifudin; Wardana, I. N. G. The Role of Ethanol as a Cosolvent for Isooctane-Methanol Blend. Fuel 2020, 262, 116465. https://doi.org/10.1016/j.fuel.2019.116465
[35] Kadarohman, A.; Hernani; Khoerunisa, F.; Astuti, R. M. A Potential Study on Clove Oil, Eugenol and Eugenyl Acetate as Diesel Fuel Bio-Additives and Their Performance on One Cylinder Engine. Transport 2010, 25, 66–76. https://doi.org/10.3846/transport.2010.09