Titanium dioxide is the most widely used semiconductor substance as a photocatalytic material in self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. In this work, we propose a photocatalysis effect-based optical information recording on the titanium dioxide nanoparticles and luminescent dye-doped polymer nanocomposite for the first time. The optical information was recorded as holographic gratings. Holographic and non-holographic methods were employed to record optical information on a polymer nanocomposite. A green laser beam and a halogen-tungsten lamp with a band-pass filter were used for this purpose. As a result, the high-density optical information was obtained, with an optical density of 500 mm⁻¹. The data recorded on the polymer nanocomposite is stable and durable.
[1] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyl Trimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325– 338. https://doi.org/10.23939/chcht17.02.325
[2] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine. Chem. Chem. Technol. 2023, 17, 549–556. https://doi.org/10.23939/chcht17.03.549
[3] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740–747. https://doi.org/10.23939/chcht17.04.740
[4] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial- Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758
[5] Tatrishvili, T.; Mukbaniani, O. Cyclic Silicon Organic Copolymers: Synthesis and Investigation. Review. Chem. Chem. Technol. 2024, 18, 131–142. https://doi.org/10.23939/chcht18.02.131
[6] Zozulya, G.; Kunty, О.; Shepida, M.; Kordan, V. Synthesis of Silver Nanoparticles and Silver-Gold Binary System by Galvanic Replacement in an Ultrasonic Field. Chem. Chem. Technol. 2024, 18, 342–349. https://doi.org/10.23939/chcht18.03.342
[7] Mekuye, B.; Abera, B. Nanomaterials: An Overview of Synthesis, Classification, Characterization, and Applications. Nano Select. 2023, 4, 486–501. https://doi.org/10.1002/nano.202300038
[8] Chubinidze, K.; Partsvania, B.; Sulaberidze, T.; Khuskivadze, A.; Davitashvili, E.; Koshoridze, N. Luminescence Enhancement in Nanocomposite Consisting of Polyvinyl Alcohol Incorporated Gold Nanoparticles and Nile Blue 690 Perchlorate. Appl. Opt. 2014, 53, 7177–7181. https://doi.org/10.1364/AO.53.007177
[9] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. https://doi.org/10.1038/238037a0
[10] Carey, J.H.; Lawrence, J.; Tosine, H.M. Photodechlorination of PCBs in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. https://doi.org/10.1007/BF01685575
[11] Frank, S.N.; Bard, A.J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders. J. Phys. Chem. 1977, 81, 1484–1488. https://doi.org/10.1021/ja00443a081
[12] Xu, M.X.; Wang, Y.H.; Geng, J.F.; Jing, D.W. Photodecomposition of NOx on Ag/TiO2 Composite Catalysts in a Gas Phase Reactor. Chem. Eng. J. 2017, 307, 181–188. https://doi.org/10.1016/j.cej.2016.08.080
[13] Keller, A.A.; McFerran, S.; Lazareva, A. Suh, S. Global Life Cycle Releases of Engineered Nanomaterials. J Nanopart Res. 2013, 15, 1692. https://doi.org/10.1007/s11051-013-1692-4
[14] El-Hosainy, H.; Mine, Sh.; Toyao, T.; Shimizu, K-I.; Tsunoji, N.; Esmat, M.; Doustkhah, E.; El-Kemary, M.; Ide, Y. Mof-Like Silicate Stabilises Diiron to Mimic Uv-Shielding TiO2 Nanoparticle Materials. Today Nano 2022, 19, 100227. http://dx.doi.org/10.2139/ssrn.4045989
[15] Gyulavári, T.; Kovács, K.; Kovács, Z.; Bárdos, E.; Kovács, G.; Baán, K.; Magyari, K.; Veréb, G.; Pap, Z.; Hernadi, K. Preparation and Characterization of Noble Metal Modified Titanium Dioxide Hollow Spheres – New Insights Concerning the Light Trapping Efficiency. Appl. Surf. Sci. 2020, 534, 147327. https://doi.org/10.1016/j.apsusc.2020.147327
[16] Solymos, K.; Babcsányi, Iz.; Ariya, B.; Gyulavári, T.; Ágoston, Á.; Szamosvölgyi, Á.; Kukovecz, Á.; Kónya, Z.; Farsang, A.; Pap, Z. Photocatalytic and Surface Properties of Titanium Dioxide Nanoparticles in Soil Solutions. Environ. Sci.: Nano 2024, 11, 1–29. https://doi.org/10.1039/D3EN00622K
[17] Chimmikuttanda, S. P.; Naik, A.; Akple, M. S.; Singh, R. Processing of Hybrid TiO2 Semiconducting Materials and their Environmental Application. Terrestrial and Aquatic Environments 2022, 10, 277–300. https://doi.org/10.1016/B978-0-323-90485-8.00011-4
[18] Jaybhaye, S.; Shinde, N.; Jaybhaye, Sh.; Narayan H. Photocatalytic Degradation of Organic Dyes Using Titanium Dioxide (TiO2) and Mg-TiO2 Nanoparticles. J. Nanotechnol Nanomaterials 2022, 3, 67–76. https://doi.org/10.33696/Nanotechnol.3.032
[19] Gisbertz, S.; Pieber, B. Heterogeneous. Photocatalysis in Organic Synthesis. Chem Photo Chem. 2020, 4, 456–475. https://doi.org/10.1002/cptc.202000014
[20] Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment-A Review. Catalysts 2020, 10, 804. https://doi.org/10.3390/catal10070804
[21] Lumeau, J. Photosensitive Materials: Optical properties and applications. Optics / Photonic; Aix Marseille Université, 2012; pp 1-111. https://hal.science/tel-01274421v1
[22] Petriashvili, G.; De Santo, M.; Devadze, L.; Zurabishvili, Ts.; Sepashvili, N.; Gary, R.; Riccardo Barberi, R. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film. Macromol. Rapid Commun. 2016, 37, 500–505. https://doi.org/10.1002/marc.201500626
[23] Murray, M.; Naydenova, Iz.; Martin, S. Review of Recent Advances in Photosensitive Polymer Materials and Requirements for Transmission Diffractive Optical Elements for LED Light Sources. Opt. Mater. Express 2023, 13, 3481–3501. https://doi.org/10.1364/OME.502234
[24] Liao, Y.-Y.; Liu, J.-H. Holographic Gratings Formed in Photosensitive Polymer Materials with a Liquid Crystalline Monomer. React. Funct. Polym. 2009, 69, 281–286. https://doi.org/10.1016/j.reactfunctpolym.2009.01.011