The article considers the influence of precursor type and sol-gel synthesis conditions of TiO2 on its properties. The obtained TiO2 samples were characterized by X-ray diffraction methods, electron microscopy, as a result of which it was found that all the obtained TiO2 powders have the crystallite size in a nanorange of 2.5–17 nm. It was shown that sorption-photocatalytic properties of TiO2 significantly depend on a phase composition, surface acidity, specific surface area and porosity. It was found that the amorphous TiO2 has improved adsorption properties, while crystalline TiO2 is characterized by enhanced photocatalytic properties. Determined acidic nature of the TiO2 surface explains the better sorption and photocatalysis relative to the cationic dye.
- Janus M., Kusiak-Nejman E., Morawski A.: Reac. Kinet. Mech. Cat., 2011, 103, 279. https://doi.org/10.1007/s11144-011-0326-z
- Dontsova T., Nahirniak S., Astrelin I.: J. Nanomater., 2019, 2019. https://doi.org/10.1155/2019/5942194
- Apopei P., Catrinescu C., Teodosiu C.: Appl. Catal. B- Environ., 2014, 160-161, 374. https://doi.org/10.1016/j.apcatb.2014.05.030
- Shi L., Weng D.: Int. J. Environ. Sci., 2008, 20, 1263. https://doi.org/10.1016/S1001-0742(08)62219-6
- Siah W., Lintang H., Shamsuddin M.: IOP Conf. Ser.: Mater. Sci. Eng., 2016, 107, 012005. https://doi.org/10.1088/1757-899X/107/1/012005
- Nyamukamba P., Okoh O., Mungondori H. et al.: Synthetic Methods for Titanium Dioxide Nanoparticles: A Review [in:] Yang D. (Ed.), Material for a Sustainable Environment: ТіО2, IntechOpen 2018. https://doi.org/10.5772/intechopen.75425
- Kulkarni M., Thakur P.: Chem. Chem. Technol., 2010, 4, 265.
- Sviderskyi A., Nahirniak S., Yashchenko T. et al.: 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 2018, 8914913. https://doi.org/10.1109/NAP.2018.8914913
- Górska P., Zaleska A., Kowalska E.: Appl. Catal. B-Environ., 2008, 84, 440. https://doi.org/10.1016/j.apcatb.2008.04.028
- Randorna C., Irvine J.: J. Mater. Chem., 2010, 20, 8700. https://doi.org/10.1039/C0JM01370F
- Catauro M., Tranquillo E., Dal-Poggetto G. et al.: Materials, 2018, 11, 2364. https://doi.org/10.3390/ma11122364
- Buraso W., Lachom V., Siriya P. et al.: Mater. Res. Express, 2018, 5, 115003. https://doi.org/10.1088/2053-1591/aadbf0
- Kutuzova A., Dontsova T.: Proceedings of the 2018 IEEE 8 the International Conference on Nanomaterials: Application & Properties (NAP), 2018, 8914747. https://doi.org/10.1109/NAP.2018.8914747
- Abisharani J., Devikala S., Dinesh Kumar R. et al.: Mater. Today Proceedings, 2019, 14, 302. https://doi.org/10.1016/j.matpr.2019.04.151
- Hu H., Lina Y., Hu Y.: Chem. Eng., 2019, 375, 122029. https://doi.org/10.1016/j.cej.2019.122029
- Kutuzova A., Dontsova T.: Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Application & Properties (NAP), 2017, 01NNPT02. https://doi.org/10.1109/NAP.2017.8190182
- Awad N., Edwards S., Morsi Y.: Mater. Sci. Eng. C, 2017, 76, 1401. https://doi.org/10.1016/j.msec.2017.02.150
- Wang Y., He Y., Lai Q.: J. Environ. Sci., 2014, 26, 2139. https://doi.org/10.1016/j.jes.2014.09.023
- Akpan U., Hameed B.: Appl. Catal. A-Gen., 2010, 375, 1. https://doi.org/10.1016/j.apcata.2009.12.023
- Lee H., Song M., Jurng J.: Powder Technol., 2011, 214, 64. https://doi.org/10.1016/j.powtec.2011.07.036
- Mamaghani A., Haghighat F., Lee C.-S.: Chemosphere, 2019, 219, 804. https://doi.org/10.1016/j.chemosphere.2018.12.029
- Arconada N., Durán A., Suárez S. et al.: Appl. Catal. B-Environ., 2009, 86, 1. https://doi.org/10.1016/j.apcatb.2008.07.021
- Teng H., Xu S., Wang J.: Rare Metal Mat. Eng., 2014, 43, 2326. https://doi.org/10.1016/S1875-5372(14)60163-6
- Sathiyan K., Bar-Ziv R., Mendelson O. et al.: Mater. Res. Bull., 2020, 126, 110842. https://doi.org/10.1016/j.materresbull.2020.110842
- Rathore N., Kulshreshtha A., Shukla R.: Physica B, 2020, 582, 411969. https://doi.org/10.1016/j.physb.2019.411969
- Wang Q., Kwona S.-H., Hui K. et al.: Vacuum, 2013, 89, 90. https://doi.org/10.1016/j.vacuum.2011.11.020
- Shimizua T., Fujibayashia S., Yamaguchi S. et al.: Acta Biomater., 2016, 35, 305. https://doi.org/10.1016/j.actbio.2016.02.007
- Cimieri I., Poelman H., Ryckaert J. et al.: J Photoch Photobio A, 2013, 263, 1. https://doi.org/10.1016/j.jphotochem.2013.04.025
- Kutuzova A., Dontsova T.: Appl. Nanosci., 2019, 9, 873. https://doi.org/10.1007/s13204-018-0754-4
- Mutuma B., Shao G., Kim W. et al.: J. Colloid Interf. Sci., 2015, 442, 1. https://doi.org/10.1016/j.jcis.2014.11.060
- Habibi S., Jamshidi M.: Mater. Sci. Semicond. Process., 2020, 109, 104927. https://doi.org/10.1016/j.mssp.2020.104927
- Henderson M.: Surf. Sci. Rep. 2011, 66, 185. https://doi.org/10.1016/j.surfrep.2011.01.001
- Elsellami L., Dappozze F., Fessi N. et al.: Process Saf. Environ., 2018, 113, 109. https://doi.org/10.1016/j.psep.2017.09.006
- Leyva-Porras C., Toxqui-Teran A., Vega-Becerra O. et al.: J. Alloy Compd., 2015, 647, 627. https://doi.org/10.1016/j.jallcom.2015.06.041
- Pazokifard S., Farrokhpay S., Mirabedini M. et al.: Prog. Org. Coat., 2015, 87, 36. https://doi.org/10.1016/j.porgcoat.2015.04.021
- Dontsova T., Yanushevskaya E., Nahirniak S. et al.: J. Nanomater., 2018, 2018. https://doi.org/10.1155/2018/6573016
- Dontsova T., Ivanenko I., Astrelin I.: Springer Proc. Phys., 2015, 167, 275. https://doi.org/10.1007/978-3-319-18543-9_19
- Hamal D., Klabunde K.: J. Colloid Interf. Sci., 2007, 311, 514. https://doi.org/10.1016/j.jcis.2007.03.001
- Lee K., Mazare A., Schmuki P.: Chem. Rev., 2014, 114, 9385. https://doi.org/10.1021/cr500061m