Characterization and Properties of Titanium(IV) Oxide, Synthesized by Different Routes

2021;
: pp. 465-474
1
Department of Technology of Inorganic Substances, Water Purification and General Chemical Technology, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
2
Department of Environmental Health Engineering, Faculty of Health, Sabzevar University of Medical Sciences, Department of Engineering, Kashmar Branch, Islamic Azad University

The article considers the influence of precursor type and sol-gel synthesis conditions of TiO2 on its properties. The obtained TiO2 samples were characterized by X-ray diffraction methods, electron microscopy, as a result of which it was found that all the obtained TiO2 powders have the crystallite size in a nanorange of 2.5–17 nm. It was shown that sorption-photocatalytic properties of TiO2 significantly depend on a phase composition, surface acidity, specific surface area and porosity. It was found that the amorphous TiO2 has improved adsorption properties, while crystalline TiO2 is characterized by enhanced photocatalytic properties. Determined acidic nature of the TiO2 surface explains the better sorption and photocatalysis relative to the cationic dye.

  1. Janus M., Kusiak-Nejman E., Morawski A.: Reac. Kinet. Mech. Cat., 2011, 103, 279. https://doi.org/10.1007/s11144-011-0326-z
  2. Dontsova T., Nahirniak S., Astrelin I.: J. Nanomater., 2019, 2019. https://doi.org/10.1155/2019/5942194
  3. Apopei P., Catrinescu C., Teodosiu C.: Appl. Catal. B- Environ., 2014, 160-161, 374. https://doi.org/10.1016/j.apcatb.2014.05.030
  4. Shi L., Weng D.: Int. J. Environ. Sci., 2008, 20, 1263. https://doi.org/10.1016/S1001-0742(08)62219-6
  5. Siah W., Lintang H., Shamsuddin M.: IOP Conf. Ser.: Mater. Sci. Eng., 2016, 107, 012005. https://doi.org/10.1088/1757-899X/107/1/012005
  6. Nyamukamba P., Okoh O., Mungondori H. et al.: Synthetic Methods for Titanium Dioxide Nanoparticles: A Review [in:] Yang D. (Ed.), Material for a Sustainable Environment: ТіО2, IntechOpen 2018. https://doi.org/10.5772/intechopen.75425
  7. Kulkarni M., Thakur P.: Chem. Chem. Technol., 2010, 4, 265.
  8. Sviderskyi A., Nahirniak S., Yashchenko T. et al.: 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 2018, 8914913. https://doi.org/10.1109/NAP.2018.8914913
  9. Górska P., Zaleska A., Kowalska E.: Appl. Catal. B-Environ., 2008, 84, 440. https://doi.org/10.1016/j.apcatb.2008.04.028
  10. Randorna C., Irvine J.: J. Mater. Chem., 2010, 20, 8700. https://doi.org/10.1039/C0JM01370F
  11. Catauro M., Tranquillo E., Dal-Poggetto G. et al.: Materials, 2018, 11, 2364. https://doi.org/10.3390/ma11122364
  12. Buraso W., Lachom V., Siriya P. et al.: Mater. Res. Express, 2018, 5, 115003. https://doi.org/10.1088/2053-1591/aadbf0
  13. Kutuzova A., Dontsova T.: Proceedings of the 2018 IEEE 8 the International Conference on Nanomaterials: Application & Properties (NAP), 2018, 8914747. https://doi.org/10.1109/NAP.2018.8914747
  14. Abisharani J., Devikala S., Dinesh Kumar R. et al.: Mater. Today Proceedings, 2019, 14, 302. https://doi.org/10.1016/j.matpr.2019.04.151
  15. Hu H., Lina Y., Hu Y.: Chem. Eng., 2019, 375, 122029. https://doi.org/10.1016/j.cej.2019.122029
  16. Kutuzova A., Dontsova T.: Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Application & Properties (NAP), 2017, 01NNPT02. https://doi.org/10.1109/NAP.2017.8190182
  17. Awad N., Edwards S., Morsi Y.: Mater. Sci. Eng. C, 2017, 76, 1401. https://doi.org/10.1016/j.msec.2017.02.150
  18. Wang Y., He Y., Lai Q.: J. Environ. Sci., 2014, 26, 2139. https://doi.org/10.1016/j.jes.2014.09.023
  19. Akpan U., Hameed B.: Appl. Catal. A-Gen., 2010, 375, 1. https://doi.org/10.1016/j.apcata.2009.12.023
  20. Lee H., Song M., Jurng J.: Powder Technol., 2011, 214, 64. https://doi.org/10.1016/j.powtec.2011.07.036
  21. Mamaghani A., Haghighat F., Lee C.-S.: Chemosphere, 2019, 219, 804. https://doi.org/10.1016/j.chemosphere.2018.12.029
  22. Arconada N., Durán A., Suárez S. et al.: Appl. Catal. B-Environ., 2009, 86, 1. https://doi.org/10.1016/j.apcatb.2008.07.021
  23. Teng H., Xu S., Wang J.: Rare Metal Mat. Eng., 2014, 43, 2326. https://doi.org/10.1016/S1875-5372(14)60163-6
  24. Sathiyan K., Bar-Ziv R., Mendelson O. et al.: Mater. Res. Bull., 2020, 126, 110842. https://doi.org/10.1016/j.materresbull.2020.110842
  25. Rathore N., Kulshreshtha A., Shukla R.: Physica B, 2020, 582, 411969. https://doi.org/10.1016/j.physb.2019.411969
  26. Wang Q., Kwona S.-H., Hui K. et al.: Vacuum, 2013, 89, 90. https://doi.org/10.1016/j.vacuum.2011.11.020
  27. Shimizua T., Fujibayashia S., Yamaguchi S. et al.: Acta Biomater., 2016, 35, 305. https://doi.org/10.1016/j.actbio.2016.02.007
  28. Cimieri I., Poelman H., Ryckaert J. et al.: J Photoch Photobio A, 2013, 263, 1. https://doi.org/10.1016/j.jphotochem.2013.04.025
  29. Kutuzova A., Dontsova T.: Appl. Nanosci., 2019, 9, 873. https://doi.org/10.1007/s13204-018-0754-4
  30. Mutuma B., Shao G., Kim W. et al.: J. Colloid Interf. Sci., 2015, 442, 1. https://doi.org/10.1016/j.jcis.2014.11.060
  31. Habibi S., Jamshidi M.: Mater. Sci. Semicond. Process., 2020, 109, 104927. https://doi.org/10.1016/j.mssp.2020.104927
  32. Henderson M.: Surf. Sci. Rep. 2011, 66, 185. https://doi.org/10.1016/j.surfrep.2011.01.001
  33. Elsellami L., Dappozze F., Fessi N. et al.: Process Saf. Environ., 2018, 113, 109. https://doi.org/10.1016/j.psep.2017.09.006
  34. Leyva-Porras C., Toxqui-Teran A., Vega-Becerra O. et al.: J. Alloy Compd., 2015, 647, 627. https://doi.org/10.1016/j.jallcom.2015.06.041
  35. Pazokifard S., Farrokhpay S., Mirabedini M. et al.: Prog. Org. Coat., 2015, 87, 36. https://doi.org/10.1016/j.porgcoat.2015.04.021
  36. Dontsova T., Yanushevskaya E., Nahirniak S. et al.: J. Nanomater., 2018, 2018. https://doi.org/10.1155/2018/6573016
  37. Dontsova T., Ivanenko I., Astrelin I.: Springer Proc. Phys., 2015, 167, 275. https://doi.org/10.1007/978-3-319-18543-9_19
  38. Hamal D., Klabunde K.: J. Colloid Interf. Sci., 2007, 311, 514. https://doi.org/10.1016/j.jcis.2007.03.001
  39. Lee K., Mazare A., Schmuki P.: Chem. Rev., 2014, 114, 9385. https://doi.org/10.1021/cr500061m