The polymer materials, which contain Phosphorus in the main chain, have considerable interest as materials for medical and biomedical applications. Therefore, it is actually to find a convenient method for obtaining polyetherphosphates. The article is discussing the method of obtaining polyethylene glycol ethylphosphate, which is a monomer for the preparation of polyphosphates. Polyethylene glycol ethylphosphate was obtained by interaction between a polyethylene glycol trityl ether and ethyldichlorophosphate.
At the first stage, one of the chlorines POCl3 is replaced by aliphatic alcohol. The substitute of the aliphatic fragment is important for the synthesis of surface-active compounds. The structure of the obtained ethyldichlorophosphate was confirmed by the titration and 31P NMR spectroscopy. The yield of this product is low and amount 30-33%. At the second stage, one of the hydroxyl groups of polyethylene glycol was protected by a trityl group to prevent the interaction with two hydroxyl groups. The polyethylene glycol trityl ether was characterized by IR spectroscopy.
At the next step, other chlorines of ethyldichlorophosphate are replaced by the interaction with the hydroxyl groups of the trityl esters of polyethylene glycol. The resulting intermediate, trityl ester of polyethylene glycol ethylphosphate, was characterized by IR spectroscopy, 31P NMR spectroscopy, and elemental analysis. At the end stage of synthesis protection is removed. The final product, polyethylene glycol ethylphosphate, was characterized by IR spectroscopy and elemental analysis.
The surface-active properties of polyethylene glycol-ethyl phosphate have been investigated. The resulting product has surface-active properties, but has not a critical micelle concentration (CMC)
1. Bauer K. N., Tee H. T., Velencoso M. M., Wurm F. R. (2017). Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications. Progress in Polymer Science, 73, 61-122.
https://doi.org/10.1016/j.progpolymsci.2017.05.004
2. Wang Z.-Y., Li X.-W., Li J.-N., Li G.-M., Tao J.-Q. (2009). Synthesis of poly(lactic acid)-poly(phenyl phos-phate) via direct polycondensation and its charac-terization. Journal of Polymer Research, 16(3), 255-261.
https://doi.org/10.1007/s10965-008-9224-0
3. Wang Y.-C., Yuan Y.-Y., Du J.-Z., Yang X.-Z., Wang J. (2009). Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications. Macromolecular Bioscience, 9(12), 1154-1164.
https://doi.org/10.1002/mabi.200900253
4. Zhao, Z., Wang, J., Mao, H.-Q. & Leong, K. W. (2003). Polyphosphoesters in drug and gene delivery. Advanced Drug Delivery Reviews, 55(4), 483-499.
https://doi.org/10.1016/S0169-409X(03)00040-1
5. Chaubal M. V., Wang B., Su G., Zhao Z. (2003) Compo¬sitional analysis of biodegradable polypho-sphoester copolymers using NMR spectroscopic methods. Journal of Applied Polymer Science, 90, 4021- 4031.
https://doi.org/10.1002/app.13165
6. Clément, B., Grignard, B., Koole, L., Jérôme, C., Lecomte, P. (2012). Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules, 45(11), 4476-4486.
https://doi.org/10.1021/ma3004339
7. Nagornyak M., Figurka N., Samaryk V., Varvarenko S., Ferens M., Oleksa V. (2016). Modification of polysaccharides by N-derivatives of glutamic acid using Steglich reaction. Chemistry & Chemical Technology, 10(4), 423-427.
https://doi.org/10.23939/chcht10.04.423
8. Varvarenko S. M., Nosova N. Н., Dron I. A., Vo-ronov A. S., Fіhurka N. V., Tarnavchyk I. T., Taras R. S., Vostres V. B., Samaryk V. Y., Voronov S. A. (2013). Novi amfifilni aminofunktsiini poliestery ta dyspersni systemy na yikh osnovi. Voprosy khymyy y khymycheskoi tekhnolohyy, № 5, 27-32.
9. Varvarenko S. M., Fihurka N. V., Samaryk V. Y., Vo¬ronov A. S., Tarnavchyk I. T., Dron I. A., Nosova N. H., Voronov S. A. (2013). Novi amfifilni poliestery psevdo¬poliaminokysloty na osnovi pryrodnykh dvoos-novnykh aminokyslot i dioliv, otrymani reaktsiieiu eteryfikatsii Stehlikha. Polimernyi zhurnal, No. 3, 282-290.
10. Syhhya S., Khanna Dzh.H. (1983). Kolyches-tvennыi orhanycheskyi analyz po funktsyonalnыm hruppam. Moskva, Khimiia.
11. Toroptseva A. M., Belohorodskaia K. V., Bon-darenko V. M. (1976). Laboratornyi praktykum po khymyy y tekhnolohyy vysokomolekuliarnykh soedynenyi. Leninhrad, Khimiia.
12. Galadzhun Y. I., Borzenkov M. M., Hevus O. I. (2012). Syntez novykh poverkhneao-aktyvnykh pokhid-nykh polietylenhlikolfosfativ. Khimiia, tekhnolo¬hiia rechovyn ta yikh zastosuvannia, reaktsiieiu ete¬ryfikatsii Stehlikha. Polimernyi zhurnal, No 726, 66-70.
13. Wang D.-Y., Song Y.-P., Lin L., Wang X.-L., Wang Y.-Z. (2011). A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer, 52(2), 233-238.
https://doi.org/10.1016/j.polymer.2010.11.023
14. Narendran N., Kishore K.(2002). Hydrolytic deg-radation and diffusion studies on a polyphosphate ester. Journal of Applied Polymer Science, 84(4), 701-708.
https://doi.org/10.1002/app.10008
15. Fieser L., Fieser M. (1970). Reahenty dlia orhanycheskoho synteza. Moskva, Myr.